使用 PyMC3 拟合拉伸指数:不良初始能量
Using PyMC3 to fit a stretched exponential: bad initial energy
我正在尝试改变最简单的入门 - pymc3 (https://docs.pymc.io/notebooks/getting_started.html) 的示例,这是线性回归拟合拉伸指数的激励示例。
我试过的模型的最简单版本是 y = exp(-x**beta)
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('seaborn-darkgrid')
# Initialize random number generator
np.random.seed(1234)
# True parameter values
sigma = .1
beta = 1
# Size of dataset
size = 1000
# Predictor variable
X1 = np.random.randn(size)
# Simulate outcome variable
Y = np.exp(-X1**beta) + np.random.randn(size)*sigma
# specify the model
import pymc3 as pm
import theano.tensor as tt
print('Running on PyMC3 v{}'.format(pm.__version__))
basic_model = pm.Model()
with basic_model:
# Priors for unknown model parameters
beta = pm.HalfNormal('beta', sigma=1)
sigma = pm.HalfNormal('sigma', sigma=1)
# Expected value of outcome
mu = pm.math.exp(-X1**beta)
# Likelihood (sampling distribution) of observations
Y_obs = pm.Normal('Y_obs', mu=mu, sigma=sigma, observed=Y)
with basic_model:
# draw 500 posterior samples
trace = pm.sample(500)
产生输出
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [sigma, beta]
Sampling 4 chains: 0%| | 0/4000 [00:00<?, ?draws/s]/opt/conda/lib/python3.7/site-packages/numpy/core/fromnumeric.py:2920: RuntimeWarning: Mean of empty slice.
out=out, **kwargs)
/opt/conda/lib/python3.7/site-packages/numpy/core/fromnumeric.py:2920: RuntimeWarning: Mean of empty slice.
out=out, **kwargs)
Bad initial energy, check any log probabilities that are inf or -inf, nan or very small:
Y_obs NaN
---------------------------------------------------------------------------
RemoteTraceback Traceback (most recent call last)
RemoteTraceback:
"""
Traceback (most recent call last):
File "/opt/conda/lib/python3.7/site-packages/pymc3/parallel_sampling.py", line 160, in _start_loop
point, stats = self._compute_point()
File "/opt/conda/lib/python3.7/site-packages/pymc3/parallel_sampling.py", line 191, in _compute_point
point, stats = self._step_method.step(self._point)
File "/opt/conda/lib/python3.7/site-packages/pymc3/step_methods/arraystep.py", line 247, in step
apoint, stats = self.astep(array)
File "/opt/conda/lib/python3.7/site-packages/pymc3/step_methods/hmc/base_hmc.py", line 144, in astep
raise SamplingError("Bad initial energy")
pymc3.exceptions.SamplingError: Bad initial energy
"""
The above exception was the direct cause of the following exception:
SamplingError Traceback (most recent call last)
SamplingError: Bad initial energy
The above exception was the direct cause of the following exception:
ParallelSamplingError Traceback (most recent call last)
<ipython-input-310-782c941fbda8> in <module>
1 with basic_model:
2 # draw 500 posterior samples
----> 3 trace = pm.sample(500)
/opt/conda/lib/python3.7/site-packages/pymc3/sampling.py in sample(draws, step, init, n_init, start, trace, chain_idx, chains, cores, tune, progressbar, model, random_seed, discard_tuned_samples, compute_convergence_checks, **kwargs)
435 _print_step_hierarchy(step)
436 try:
--> 437 trace = _mp_sample(**sample_args)
438 except pickle.PickleError:
439 _log.warning("Could not pickle model, sampling singlethreaded.")
/opt/conda/lib/python3.7/site-packages/pymc3/sampling.py in _mp_sample(draws, tune, step, chains, cores, chain, random_seed, start, progressbar, trace, model, **kwargs)
967 try:
968 with sampler:
--> 969 for draw in sampler:
970 trace = traces[draw.chain - chain]
971 if (trace.supports_sampler_stats
/opt/conda/lib/python3.7/site-packages/pymc3/parallel_sampling.py in __iter__(self)
391
392 while self._active:
--> 393 draw = ProcessAdapter.recv_draw(self._active)
394 proc, is_last, draw, tuning, stats, warns = draw
395 if self._progress is not None:
/opt/conda/lib/python3.7/site-packages/pymc3/parallel_sampling.py in recv_draw(processes, timeout)
295 else:
296 error = RuntimeError("Chain %s failed." % proc.chain)
--> 297 raise error from old_error
298 elif msg[0] == "writing_done":
299 proc._readable = True
ParallelSamplingError: Bad initial energy
INFO (theano.gof.compilelock): Waiting for existing lock by process '30255' (I am process '30252')
INFO (theano.gof.compilelock): To manually release the lock, delete /home/jovyan/.theano/compiledir_Linux-4.4--generic-x86_64-with-debian-buster-sid-x86_64-3.7.3-64/lock_dir
/opt/conda/lib/python3.7/site-packages/numpy/core/fromnumeric.py:2920: RuntimeWarning: Mean of empty slice.
out=out, **kwargs)
/opt/conda/lib/python3.7/site-packages/numpy/core/fromnumeric.py:2920: RuntimeWarning: Mean of empty slice.
out=out, **kwargs)
除了拉伸指数,我还尝试了幂律和正弦函数。在我看来,只要我的模型不是单射的,问题就会出现。这会成为一个问题吗(很明显,我是这个领域的新手)?我可以将采样限制为仅正 x 值吗?这有什么技巧吗?
所以这里的问题是
X1**beta
仅在X1 >= 0
或beta
为整数时定义。当你将其输入到你的观察中时,对于大多数地方,beta
将是一个浮点数,而且很多
mu = pm.math.exp(-X1**beta)
将是 nan
。
我用
发现了这个
>>> basic_model.check_test_point()
beta_log__ -0.77
sigma_log__ -0.77
Y_obs NaN
Name: Log-probability of test_point, dtype: float64
我不确定您要指定的型号!有多种方法可以要求 beta
为整数,也有多种方法可以要求 X1
为正数,但我需要更多详细信息来帮助您描述模型。
我正在尝试改变最简单的入门 - pymc3 (https://docs.pymc.io/notebooks/getting_started.html) 的示例,这是线性回归拟合拉伸指数的激励示例。
我试过的模型的最简单版本是 y = exp(-x**beta)
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('seaborn-darkgrid')
# Initialize random number generator
np.random.seed(1234)
# True parameter values
sigma = .1
beta = 1
# Size of dataset
size = 1000
# Predictor variable
X1 = np.random.randn(size)
# Simulate outcome variable
Y = np.exp(-X1**beta) + np.random.randn(size)*sigma
# specify the model
import pymc3 as pm
import theano.tensor as tt
print('Running on PyMC3 v{}'.format(pm.__version__))
basic_model = pm.Model()
with basic_model:
# Priors for unknown model parameters
beta = pm.HalfNormal('beta', sigma=1)
sigma = pm.HalfNormal('sigma', sigma=1)
# Expected value of outcome
mu = pm.math.exp(-X1**beta)
# Likelihood (sampling distribution) of observations
Y_obs = pm.Normal('Y_obs', mu=mu, sigma=sigma, observed=Y)
with basic_model:
# draw 500 posterior samples
trace = pm.sample(500)
产生输出
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [sigma, beta]
Sampling 4 chains: 0%| | 0/4000 [00:00<?, ?draws/s]/opt/conda/lib/python3.7/site-packages/numpy/core/fromnumeric.py:2920: RuntimeWarning: Mean of empty slice.
out=out, **kwargs)
/opt/conda/lib/python3.7/site-packages/numpy/core/fromnumeric.py:2920: RuntimeWarning: Mean of empty slice.
out=out, **kwargs)
Bad initial energy, check any log probabilities that are inf or -inf, nan or very small:
Y_obs NaN
---------------------------------------------------------------------------
RemoteTraceback Traceback (most recent call last)
RemoteTraceback:
"""
Traceback (most recent call last):
File "/opt/conda/lib/python3.7/site-packages/pymc3/parallel_sampling.py", line 160, in _start_loop
point, stats = self._compute_point()
File "/opt/conda/lib/python3.7/site-packages/pymc3/parallel_sampling.py", line 191, in _compute_point
point, stats = self._step_method.step(self._point)
File "/opt/conda/lib/python3.7/site-packages/pymc3/step_methods/arraystep.py", line 247, in step
apoint, stats = self.astep(array)
File "/opt/conda/lib/python3.7/site-packages/pymc3/step_methods/hmc/base_hmc.py", line 144, in astep
raise SamplingError("Bad initial energy")
pymc3.exceptions.SamplingError: Bad initial energy
"""
The above exception was the direct cause of the following exception:
SamplingError Traceback (most recent call last)
SamplingError: Bad initial energy
The above exception was the direct cause of the following exception:
ParallelSamplingError Traceback (most recent call last)
<ipython-input-310-782c941fbda8> in <module>
1 with basic_model:
2 # draw 500 posterior samples
----> 3 trace = pm.sample(500)
/opt/conda/lib/python3.7/site-packages/pymc3/sampling.py in sample(draws, step, init, n_init, start, trace, chain_idx, chains, cores, tune, progressbar, model, random_seed, discard_tuned_samples, compute_convergence_checks, **kwargs)
435 _print_step_hierarchy(step)
436 try:
--> 437 trace = _mp_sample(**sample_args)
438 except pickle.PickleError:
439 _log.warning("Could not pickle model, sampling singlethreaded.")
/opt/conda/lib/python3.7/site-packages/pymc3/sampling.py in _mp_sample(draws, tune, step, chains, cores, chain, random_seed, start, progressbar, trace, model, **kwargs)
967 try:
968 with sampler:
--> 969 for draw in sampler:
970 trace = traces[draw.chain - chain]
971 if (trace.supports_sampler_stats
/opt/conda/lib/python3.7/site-packages/pymc3/parallel_sampling.py in __iter__(self)
391
392 while self._active:
--> 393 draw = ProcessAdapter.recv_draw(self._active)
394 proc, is_last, draw, tuning, stats, warns = draw
395 if self._progress is not None:
/opt/conda/lib/python3.7/site-packages/pymc3/parallel_sampling.py in recv_draw(processes, timeout)
295 else:
296 error = RuntimeError("Chain %s failed." % proc.chain)
--> 297 raise error from old_error
298 elif msg[0] == "writing_done":
299 proc._readable = True
ParallelSamplingError: Bad initial energy
INFO (theano.gof.compilelock): Waiting for existing lock by process '30255' (I am process '30252')
INFO (theano.gof.compilelock): To manually release the lock, delete /home/jovyan/.theano/compiledir_Linux-4.4--generic-x86_64-with-debian-buster-sid-x86_64-3.7.3-64/lock_dir
/opt/conda/lib/python3.7/site-packages/numpy/core/fromnumeric.py:2920: RuntimeWarning: Mean of empty slice.
out=out, **kwargs)
/opt/conda/lib/python3.7/site-packages/numpy/core/fromnumeric.py:2920: RuntimeWarning: Mean of empty slice.
out=out, **kwargs)
除了拉伸指数,我还尝试了幂律和正弦函数。在我看来,只要我的模型不是单射的,问题就会出现。这会成为一个问题吗(很明显,我是这个领域的新手)?我可以将采样限制为仅正 x 值吗?这有什么技巧吗?
所以这里的问题是
X1**beta
仅在X1 >= 0
或beta
为整数时定义。当你将其输入到你的观察中时,对于大多数地方,beta
将是一个浮点数,而且很多
mu = pm.math.exp(-X1**beta)
将是 nan
。
我用
发现了这个>>> basic_model.check_test_point()
beta_log__ -0.77
sigma_log__ -0.77
Y_obs NaN
Name: Log-probability of test_point, dtype: float64
我不确定您要指定的型号!有多种方法可以要求 beta
为整数,也有多种方法可以要求 X1
为正数,但我需要更多详细信息来帮助您描述模型。