每行中第一个非 NA 和最后一个非 NA 之间的差异
difference between first non-NA and last non-NA in each row
我有一个最多包含 5 个测量值 (x) 及其对应时间的数据框:
df = structure(list(x1 = c(92.9595722286402, 54.2085219673818,
46.3227062573019,
NA, 65.1501442134141, 49.736451235317), time1 = c(43.2715277777778,
336.625, 483.975694444444, NA, 988.10625, 510.072916666667),
x2 = c(82.8368681534474, 53.7981639701784, 12.9993531230419,
NA, 64.5678816290574, 55.331442940348), time2 = c(47.8166666666667,
732, 506.747222222222, NA, 1455.25486111111, 958.976388888889
), x3 = c(83.5433119686794, 65.723072881366, 19.0147593408309,
NA, 65.1989838202356, 36.7000828457705), time3 = c(86.5888888888889,
1069.02083333333, 510.275, NA, 1644.21527777778, 1154.95694444444
), x4 = c(NA, 66.008102917677, 40.6243513885846, NA, 62.1694420909955,
29.0078249523063), time4 = c(NA, 1379.22986111111, 520.726388888889,
NA, 2057.20833333333, 1179.86805555556), x5 = c(NA, 61.0047472617535,
45.324715258421, NA, 59.862110645527, 45.883161439362), time5 = c(NA,
1825.33055555556, 523.163888888889, NA, 3352.26944444444,
1364.99513888889)), class = c("tbl_df", "tbl", "data.frame"
), row.names = c(NA, -6L))
"NA"表示此人(行)没有三围。
我想计算最后一个现有测量值与第一个现有测量值之间的差异。
所以第一个是 x3 减去 x1 (6.4),第二个是 -6.8,依此类推。
我试过这样的方法,但没有用:
df$diff = apply(df %>% select(., contains("x")), 1, function(x) head(x,
na.rm = T) - tail(x, na.rm=T))
有什么建议吗?另外,apply/rowwise 是最有效的方法,还是有一个矢量化函数可以做到这一点?
矢量化方法将使用 max.col
,我们使用 ties.method
参数
获得 "first"
和 "last"
non-NA 值
#Get column number of first and last col
first_col <- max.col(!is.na(df[x_cols]), ties.method = "first")
last_col <- max.col(!is.na(df[x_cols]), ties.method = "last")
#subset the dataframe to include only `"x"` cols
new_df <- as.data.frame(df[grep("^x", names(df))])
#Subtract last non-NA value with the first one
df$new_calc <- new_df[cbind(1:nrow(df), last_col)] -
new_df[cbind(1:nrow(df), first_col)]
使用apply
你可以做到
x_cols <- grep("^x", names(df))
df$new_calc <- apply(df[x_cols], 1, function(x) {
new_x <- x[!is.na(x)]
if (length(new_x) > 0)
new_x[length(new_x)] - new_x[1L]
else NA
})
我们可以在 tbl_df
上使用 tidyverse
方法。创建行名称列 (rownames_to_column
),gather
'x' 列为 'long' 格式,同时删除 NA 元素 (na.rm = TRUE
),按行名称分组,获取 first
和 last
值的 diff
erence 并将提取的列与原始数据集绑定 'df'
library(tidyverse)
rownames_to_column(df, 'rn') %>%
select(rn, starts_with('x')) %>%
gather(key, val, -rn, na.rm = TRUE) %>%
group_by(rn) %>%
summarise(Diff = diff(c(first(val), last(val)))) %>%
mutate(rn = as.numeric(rn)) %>%
complete(rn = min(rn):max(rn)) %>%
pull(Diff) %>%
bind_cols(df, new_col = .)
# A tibble: 6 x 11
# x1 time1 x2 time2 x3 time3 x4 time4 x5 time5 new_col
# <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 93.0 43.3 82.8 47.8 83.5 86.6 NA NA NA NA -9.42
#2 54.2 337. 53.8 732 65.7 1069. 66.0 1379. 61.0 1825. 6.80
#3 46.3 484. 13.0 507. 19.0 510. 40.6 521. 45.3 523. -0.998
#4 NA NA NA NA NA NA NA NA NA NA NA
#5 65.2 988. 64.6 1455. 65.2 1644. 62.2 2057. 59.9 3352. -5.29
#6 49.7 510. 55.3 959. 36.7 1155. 29.0 1180. 45.9 1365. -3.85
我有一个最多包含 5 个测量值 (x) 及其对应时间的数据框:
df = structure(list(x1 = c(92.9595722286402, 54.2085219673818,
46.3227062573019,
NA, 65.1501442134141, 49.736451235317), time1 = c(43.2715277777778,
336.625, 483.975694444444, NA, 988.10625, 510.072916666667),
x2 = c(82.8368681534474, 53.7981639701784, 12.9993531230419,
NA, 64.5678816290574, 55.331442940348), time2 = c(47.8166666666667,
732, 506.747222222222, NA, 1455.25486111111, 958.976388888889
), x3 = c(83.5433119686794, 65.723072881366, 19.0147593408309,
NA, 65.1989838202356, 36.7000828457705), time3 = c(86.5888888888889,
1069.02083333333, 510.275, NA, 1644.21527777778, 1154.95694444444
), x4 = c(NA, 66.008102917677, 40.6243513885846, NA, 62.1694420909955,
29.0078249523063), time4 = c(NA, 1379.22986111111, 520.726388888889,
NA, 2057.20833333333, 1179.86805555556), x5 = c(NA, 61.0047472617535,
45.324715258421, NA, 59.862110645527, 45.883161439362), time5 = c(NA,
1825.33055555556, 523.163888888889, NA, 3352.26944444444,
1364.99513888889)), class = c("tbl_df", "tbl", "data.frame"
), row.names = c(NA, -6L))
"NA"表示此人(行)没有三围。
我想计算最后一个现有测量值与第一个现有测量值之间的差异。
所以第一个是 x3 减去 x1 (6.4),第二个是 -6.8,依此类推。
我试过这样的方法,但没有用:
df$diff = apply(df %>% select(., contains("x")), 1, function(x) head(x,
na.rm = T) - tail(x, na.rm=T))
有什么建议吗?另外,apply/rowwise 是最有效的方法,还是有一个矢量化函数可以做到这一点?
矢量化方法将使用 max.col
,我们使用 ties.method
参数
"first"
和 "last"
non-NA 值
#Get column number of first and last col
first_col <- max.col(!is.na(df[x_cols]), ties.method = "first")
last_col <- max.col(!is.na(df[x_cols]), ties.method = "last")
#subset the dataframe to include only `"x"` cols
new_df <- as.data.frame(df[grep("^x", names(df))])
#Subtract last non-NA value with the first one
df$new_calc <- new_df[cbind(1:nrow(df), last_col)] -
new_df[cbind(1:nrow(df), first_col)]
使用apply
你可以做到
x_cols <- grep("^x", names(df))
df$new_calc <- apply(df[x_cols], 1, function(x) {
new_x <- x[!is.na(x)]
if (length(new_x) > 0)
new_x[length(new_x)] - new_x[1L]
else NA
})
我们可以在 tbl_df
上使用 tidyverse
方法。创建行名称列 (rownames_to_column
),gather
'x' 列为 'long' 格式,同时删除 NA 元素 (na.rm = TRUE
),按行名称分组,获取 first
和 last
值的 diff
erence 并将提取的列与原始数据集绑定 'df'
library(tidyverse)
rownames_to_column(df, 'rn') %>%
select(rn, starts_with('x')) %>%
gather(key, val, -rn, na.rm = TRUE) %>%
group_by(rn) %>%
summarise(Diff = diff(c(first(val), last(val)))) %>%
mutate(rn = as.numeric(rn)) %>%
complete(rn = min(rn):max(rn)) %>%
pull(Diff) %>%
bind_cols(df, new_col = .)
# A tibble: 6 x 11
# x1 time1 x2 time2 x3 time3 x4 time4 x5 time5 new_col
# <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 93.0 43.3 82.8 47.8 83.5 86.6 NA NA NA NA -9.42
#2 54.2 337. 53.8 732 65.7 1069. 66.0 1379. 61.0 1825. 6.80
#3 46.3 484. 13.0 507. 19.0 510. 40.6 521. 45.3 523. -0.998
#4 NA NA NA NA NA NA NA NA NA NA NA
#5 65.2 988. 64.6 1455. 65.2 1644. 62.2 2057. 59.9 3352. -5.29
#6 49.7 510. 55.3 959. 36.7 1155. 29.0 1180. 45.9 1365. -3.85