pandas groupby 滚动 mean/median 删除缺失值
pandas groupby rolling mean/median with dropping missing values
如何通过滚动 mean/median 进入 pandas 组并删除缺失值? IE。如果存在缺失值,输出应该在计算 mean/median 之前删除缺失值,而不是给我 NaN。
import pandas as pd
t = pd.DataFrame(data={v.date:[0,0,0,0,1,1,1,1,2,2,2,2],
'i0':[0,1,2,3,0,1,2,3,0,1,2,3],
'i1':['A']*12,
'x':[10.,20.,30.,np.nan,np.nan,21.,np.nan,41.,np.nan,np.nan,32.,42.]})
t.set_index([v.date,'i0','i1'], inplace=True)
t.sort_index(inplace=True)
print(t)
print(t.groupby('date').apply(lambda x: x.rolling(window=2).mean()))
给予
x
date i0 i1
0 0 A 10.0
1 A 20.0
2 A 30.0
3 A NaN
1 0 A NaN
1 A 21.0
2 A NaN
3 A 41.0
2 0 A NaN
1 A NaN
2 A 32.0
3 A 42.0
x
date i0 i1
0 0 A NaN
1 A 15.0
2 A 25.0
3 A NaN
1 0 A NaN
1 A NaN
2 A NaN
3 A NaN
2 0 A NaN
1 A NaN
2 A NaN
3 A 37.0
虽然我想要此示例的以下内容:
x
date i0 i1
0 0 A 10.0
1 A 15.0
2 A 25.0
3 A 30.0
1 0 A NaN
1 A 21.0
2 A 21.0
3 A 41.0
2 0 A NaN
1 A NaN
2 A 32.0
3 A 37.0
我试过的
t.groupby('date').apply(lambda x: x.rolling(window=2).dropna().median())
和
t.groupby('date').apply(lambda x: x.rolling(window=2).median(dropna=True))
(都引发异常,但可能存在一些问题)
感谢您的帮助!
您正在寻找 min_periods
?注意不需要apply
,直接调用GroupBy.Rolling
:
t.groupby('date', group_keys=False).rolling(window=2, min_periods=1).mean()
x
date i0 i1
0 0 A 10.0
1 A 15.0
2 A 25.0
3 A 30.0
1 0 A NaN
1 A 21.0
2 A 21.0
3 A 41.0
2 0 A NaN
1 A NaN
2 A 32.0
3 A 37.0
如何通过滚动 mean/median 进入 pandas 组并删除缺失值? IE。如果存在缺失值,输出应该在计算 mean/median 之前删除缺失值,而不是给我 NaN。
import pandas as pd
t = pd.DataFrame(data={v.date:[0,0,0,0,1,1,1,1,2,2,2,2],
'i0':[0,1,2,3,0,1,2,3,0,1,2,3],
'i1':['A']*12,
'x':[10.,20.,30.,np.nan,np.nan,21.,np.nan,41.,np.nan,np.nan,32.,42.]})
t.set_index([v.date,'i0','i1'], inplace=True)
t.sort_index(inplace=True)
print(t)
print(t.groupby('date').apply(lambda x: x.rolling(window=2).mean()))
给予
x
date i0 i1
0 0 A 10.0
1 A 20.0
2 A 30.0
3 A NaN
1 0 A NaN
1 A 21.0
2 A NaN
3 A 41.0
2 0 A NaN
1 A NaN
2 A 32.0
3 A 42.0
x
date i0 i1
0 0 A NaN
1 A 15.0
2 A 25.0
3 A NaN
1 0 A NaN
1 A NaN
2 A NaN
3 A NaN
2 0 A NaN
1 A NaN
2 A NaN
3 A 37.0
虽然我想要此示例的以下内容:
x
date i0 i1
0 0 A 10.0
1 A 15.0
2 A 25.0
3 A 30.0
1 0 A NaN
1 A 21.0
2 A 21.0
3 A 41.0
2 0 A NaN
1 A NaN
2 A 32.0
3 A 37.0
我试过的
t.groupby('date').apply(lambda x: x.rolling(window=2).dropna().median())
和
t.groupby('date').apply(lambda x: x.rolling(window=2).median(dropna=True))
(都引发异常,但可能存在一些问题)
感谢您的帮助!
您正在寻找 min_periods
?注意不需要apply
,直接调用GroupBy.Rolling
:
t.groupby('date', group_keys=False).rolling(window=2, min_periods=1).mean()
x
date i0 i1
0 0 A 10.0
1 A 15.0
2 A 25.0
3 A 30.0
1 0 A NaN
1 A 21.0
2 A 21.0
3 A 41.0
2 0 A NaN
1 A NaN
2 A 32.0
3 A 37.0