如何根据纪元时间('attempt_updated_at'列)获得上半场和下半场
How do I get the first half and second half depending on the epoch time('attempt_updated_at' column)
所以,我想找出'Avg. difficulty level in first vs. second half of each session',我找不到合适的方法来解决这个问题。
我使用纪元时间将会话分成两半,然后找到平均难度级别。
session_id question_difficulty attempt_updated_at
5c822af21c1fba22 2 1557470128000
5c822af21c1fba22 3 1557469685000
5c822af21c1fba22 4 1557470079000
5c822af21c1fba22 5 1557472999000
5c822af21c1fba22 3 1557474145000
5c822af21c1fba22 3 1557474441000
5c822af21c1fba22 4 1557474299000
5c822af21c1fba22 4 1557474738000
5c822af21c1fba22 3 1557475430000
5c822af21c1fba22 4 1557476960000
5c822af21c1fba22 5 1557477458000
5c822af21c1fba22 2 1557478118000
5c822af21c1fba22 5 1557482556000
5c822af21c1fba22 4 1557482809000
5c822af21c1fba22 5 1557482886000
5c822af21c1fba22 5 1557484232000
我正在研究 python pandas(Jupter Notebook)。
代码方面我不知道从哪里开始。 (新手提醒)
我希望输出如下:
session_id上半场难度下半场难度
IIUC,你可以使用 pandas.qcut
to cut epochs into 2 equally sized bins (first half / second half). Then use groupby.mean
:
df.groupby(['session_id', pd.qcut(df.attempt_updated_at, q=2)])['question_difficulty'].mean()
[出局]
session_id attempt_updated_at
5c822af21c1fba22 (1557469684999.999, 1557475084000.0] 3.500
(1557475084000.0, 1557484232000.0] 4.125
Name: question_difficulty, dtype: float64
或者,根据您定义 'first half' / 'second half' 的方式,您可能需要 pandas.cut
,使用 bins=2
参数 (在本例中时间段将等间距,而不是按照上面的 qcut
等大小):
df.groupby(['session_id', pd.cut(df.attempt_updated_at, bins=2)])['question_difficulty'].mean()
[出局]
session_id attempt_updated_at
5c822af21c1fba22 (1557469670453.0, 1557476958500.0] 3.444444
(1557476958500.0, 1557484232000.0] 4.285714
Name: question_difficulty, dtype: float64
更新
要计算唯一 session_id 的不同时间段,您可能首先必须按 session_id
分组; 运行 上述方法对每组进行;最后,concat
结果。下面是一个使用列表理解的例子:
groups_session_id = df.groupby('session_id')
pd.concat([g.groupby(['session_id', pd.cut(g['attempt_updated_at'], bins=2).astype(str)])
['question_difficulty'].mean() for _, g in groups_session_id])
更新 2
要将这些平均值添加回原始 DataFrame
,您可以使用 DataFrame.merge
:
df_avg_question_difficulty = pd.concat([g.groupby(['session_id', pd.cut(g['attempt_updated_at'], bins=2, labels = [1, 2]).astype(str)])
['question_difficulty'].mean().unstack(1) for _, g in groups_session_id])
df = df.merge(df_avg_question_difficulty, left_on='session_id', right_index=True)
所以,我想找出'Avg. difficulty level in first vs. second half of each session',我找不到合适的方法来解决这个问题。 我使用纪元时间将会话分成两半,然后找到平均难度级别。
session_id question_difficulty attempt_updated_at
5c822af21c1fba22 2 1557470128000
5c822af21c1fba22 3 1557469685000
5c822af21c1fba22 4 1557470079000
5c822af21c1fba22 5 1557472999000
5c822af21c1fba22 3 1557474145000
5c822af21c1fba22 3 1557474441000
5c822af21c1fba22 4 1557474299000
5c822af21c1fba22 4 1557474738000
5c822af21c1fba22 3 1557475430000
5c822af21c1fba22 4 1557476960000
5c822af21c1fba22 5 1557477458000
5c822af21c1fba22 2 1557478118000
5c822af21c1fba22 5 1557482556000
5c822af21c1fba22 4 1557482809000
5c822af21c1fba22 5 1557482886000
5c822af21c1fba22 5 1557484232000
我正在研究 python pandas(Jupter Notebook)。
代码方面我不知道从哪里开始。 (新手提醒)
我希望输出如下:
session_id上半场难度下半场难度
IIUC,你可以使用 pandas.qcut
to cut epochs into 2 equally sized bins (first half / second half). Then use groupby.mean
:
df.groupby(['session_id', pd.qcut(df.attempt_updated_at, q=2)])['question_difficulty'].mean()
[出局]
session_id attempt_updated_at
5c822af21c1fba22 (1557469684999.999, 1557475084000.0] 3.500
(1557475084000.0, 1557484232000.0] 4.125
Name: question_difficulty, dtype: float64
或者,根据您定义 'first half' / 'second half' 的方式,您可能需要 pandas.cut
,使用 bins=2
参数 (在本例中时间段将等间距,而不是按照上面的 qcut
等大小):
df.groupby(['session_id', pd.cut(df.attempt_updated_at, bins=2)])['question_difficulty'].mean()
[出局]
session_id attempt_updated_at
5c822af21c1fba22 (1557469670453.0, 1557476958500.0] 3.444444
(1557476958500.0, 1557484232000.0] 4.285714
Name: question_difficulty, dtype: float64
更新
要计算唯一 session_id 的不同时间段,您可能首先必须按 session_id
分组; 运行 上述方法对每组进行;最后,concat
结果。下面是一个使用列表理解的例子:
groups_session_id = df.groupby('session_id')
pd.concat([g.groupby(['session_id', pd.cut(g['attempt_updated_at'], bins=2).astype(str)])
['question_difficulty'].mean() for _, g in groups_session_id])
更新 2
要将这些平均值添加回原始 DataFrame
,您可以使用 DataFrame.merge
:
df_avg_question_difficulty = pd.concat([g.groupby(['session_id', pd.cut(g['attempt_updated_at'], bins=2, labels = [1, 2]).astype(str)])
['question_difficulty'].mean().unstack(1) for _, g in groups_session_id])
df = df.merge(df_avg_question_difficulty, left_on='session_id', right_index=True)