How to fix 'ValueError: Found input variables with inconsistent numbers of samples: [32979, 21602]'?

How to fix 'ValueError: Found input variables with inconsistent numbers of samples: [32979, 21602]'?

我正在制作逻辑回归模型来进行情绪分析。这就是问题 - ValueError: Found input variables with inconsistent numbers of samples: [32979, 21602] 当我尝试将我的数据集拆分为 x 和 y 训练集和有效集时会发生这种情况。

# splitting data into training and validation set 
xtrain_bow, xvalid_bow, ytrain, yvalid = train_test_split(train_bow, train['label'], test_size=0.3, random_state=42)
lreg = LogisticRegression() # training the model 
lreg.fit(xtrain_bow, ytrain) 
prediction = lreg.predict_proba(xvalid_bow) # predicting on the validation set 
prediction_int = prediction[:,1] >= 0.3 # if prediction is greater than or equal to 0.3 than 1 else 0 
prediction_int = prediction_int.astype(np.int) 
f1_score(yvalid, prediction_int) # calculating f1 score for the validation set 

我在一些帖子中看到它可能由于 X 和 y 的形状而发生,所以打印出数据集的形状,我将我的数据集分成 85% 用于训练和休息 test/valid 目的。

# Extracting train and test BoW features
split_frac = 0.85

split_num = int(len(combi['tidy_tweet']) * split_frac)

train_bow = bow[:split_num,:] 
test_bow = bow[split_num:,:] 
print(train_bow.shape)
print(test_bow.shape)
print(train['label'].shape)

(32979, 1000)
(5820, 1000)
(21602,)

问题也出在这一行-

----> 1 xtrain_bow, xvalid_bow, ytrain, yvalid = train_test_split(train_bow, train['label'], test_size=0.3, random_state=42)
      2 lreg = LogisticRegression() # training the model
      3 lreg.fit(xtrain_bow, ytrain)

现在我一头雾水,究竟是什么导致了这个问题?你们能帮忙吗?提前致谢。

如果你能注释掉 f1_score 并尝试,它应该不会给你那个错误。让我知道它是否有效,谢谢

你得到上面的错误是因为 train_test_split() 中第二个参数的长度,即标签是 21602 而第一个参数的长度是 32979,这不应该是。 X 和 Y 数据的长度必须相同。因此,检查 train_bowtrain['label'].

的长度

所以,只需更改

xtrain_bow, xvalid_bow, ytrain, yvalid = train_test_split(train_bow, train['label'], test_size=0.3, random_state=42) 如下所示:

xtrain_bow, xvalid_bow, ytrain, yvalid = train_test_split(bow[:split_num,:-1], bow[:split_num,-1], test_size=0.3, random_state=42)

(假设 bow 包含特征和标签,标签是最后一列)。

here 阅读更多 sklearn.model_selection.train_test_split