statsmodels.api 和 scipy.stats 不适合
statsmodels.api and scipy.stats not producing proper fit
我正在尝试通过 scipy.stats
和 statsmodels.api
的两组数据绘制一条最佳拟合线。
import matplotlib.pyplot as plt
import numpy as np
import statsmodels.api as sm
from scipy import stats
# toy data
y1 = np.array([1,2,3,4,5])
x1 = np.array([2,4,6,8,10])
y2 = np.array([1,3.0,5.0,7.0,9.0])
x2 = np.array([1,2.9,5.3,7.4,8.9])
# should produce straight lines through each data set
plt.scatter(x1, y1, label = 'LRIS')
plt.scatter(x2, y2, label = 'PFCam')
for x, y in zip([x1, x2], [y1, y2]):
model = sm.OLS(y, sm.add_constant(x))
results = model.fit()
params = stats.linregress(x, y)
plt.plot(params[0]*x + params[1])
plt.xlabel('log Integration time, t [s]')
plt.ylabel('V [mag]')
plt.legend()
plt.show()
生产
我不明白是什么原因导致 'best' 的线条像这样拟合。
您想绘制 X vs Y:
plt.plot(x, x * params.slope + params.intercept)
LGTM.
我正在尝试通过 scipy.stats
和 statsmodels.api
的两组数据绘制一条最佳拟合线。
import matplotlib.pyplot as plt
import numpy as np
import statsmodels.api as sm
from scipy import stats
# toy data
y1 = np.array([1,2,3,4,5])
x1 = np.array([2,4,6,8,10])
y2 = np.array([1,3.0,5.0,7.0,9.0])
x2 = np.array([1,2.9,5.3,7.4,8.9])
# should produce straight lines through each data set
plt.scatter(x1, y1, label = 'LRIS')
plt.scatter(x2, y2, label = 'PFCam')
for x, y in zip([x1, x2], [y1, y2]):
model = sm.OLS(y, sm.add_constant(x))
results = model.fit()
params = stats.linregress(x, y)
plt.plot(params[0]*x + params[1])
plt.xlabel('log Integration time, t [s]')
plt.ylabel('V [mag]')
plt.legend()
plt.show()
生产
我不明白是什么原因导致 'best' 的线条像这样拟合。
您想绘制 X vs Y:
plt.plot(x, x * params.slope + params.intercept)
LGTM.