如何在 Pandas groupby 对象上应用 stack() 函数

How to apply stack() function on Pandas groupby Object

我正在尝试在应用 stack() 功能时优化我的运行时。

Initial Dataframe 

  ID   SCORE1  SCORE2  YEAR
0 1111  3        4     2019
1 1111  NaN      3     2019
2 1111  5        4     2019
3 2222  6        7     2019
4 2222  2        NaN   2019
5 3333  NaN        9   2019
6 3333  4        NaN   2019
7 4444  NaN      NaN   2019
8 4444  5        6     2019

下面的 groupby.apply() 有效。

但是,处理更大的数据集需要很长时间(300 万条记录 = 25 分钟)

var = df.groupby('ID').apply(lambda x: x.iloc[:, 1:3].stack())

Output Achieved

  ID  
 1111 0  SCORE1 3
         SCORE2 4
      1  SCORE2 3
      2  SCORE1 5
         SCORE2 4
2222  3  SCORE1 6
         SCORE2 7
      4  SCORE1 2 
3333  5  SCORE2 9
      6  SCORE1 4
4444  8  SCORE1 5
         SCORE2 6

Desired output : Same

如何优化此性能?

我可以使用 transform() 吗?如何 ?它没有 stack() 调用

感谢您处理此类情况的所有见解

你可以用 melt 来做,我认为这里不需要 grouby

df.drop('YEAR',1).melt('ID').dropna()


df.set_index('ID').drop('YEAR',1).stack()