dplyr 字符串作为列参考

dplyr string as column reference

是否可以将字符串作为列引用传递给 dplyr 过程?

这是一个示例 - 使用分组数据集和一个简单函数,我尝试将字符串作为对列的引用进行传递。谢谢!

machines <- data.frame(Date=c("1/31/2014", "1/31/2014", "2/28/2014", "2/28/2014", "3/31/2014", "3/31/2014"), 
            Model.Num=c("123", "456", "123", "456", "123", "456"), 
            Cost=c(200, 300, 250, 350, 300, 400))

my.fun <- function(data, colname){
    mutate(data, position=cumsum(as.name(colname)))
}

machines <- machines %>% group_by(Date, Model.Num)     
machines <- my.fun(machines, "Cost")

这是一个使用 lazyeval 包中的 interp() 的选项,它随 dplyr 安装一起提供。在您的函数中,您需要使用 dplyr 函数的标准评估版本。在这种情况下,它将是 mutate_().

请注意,由于您在 machines 中设置分组的方式,新列 position 将与此处的 Cost 列相同。对 my_fun() 的第二次调用表明它正在处理一组不同的分组变量。

library(dplyr)
library(lazyeval)

my_fun <- function(data, col) {
    mutate_(data, position = interp(~ cumsum(x), x = as.name(col)))
}

my_fun(machines, "Cost")
#        Date Model.Num Cost position
# 1 1/31/2014       123  200      200
# 2 1/31/2014       456  300      300
# 3 2/28/2014       123  250      250
# 4 2/28/2014       456  350      350
# 5 3/31/2014       123  300      300
# 6 3/31/2014       456  400      400

## second example - different grouping
my_fun(group_by(machines, Model.Num), "Cost")
#        Date Model.Num Cost position
# 1 1/31/2014       123  200      200
# 2 1/31/2014       456  300      300
# 3 2/28/2014       123  250      450
# 4 2/28/2014       456  350      650
# 5 3/31/2014       123  300      750
# 6 3/31/2014       456  400     1050

我们可以在不使用 lazyeval 包的情况下在标准评估中进行评估。我们可以使用 setNames.

将一些字符串设置为变量名
library(tidyverse)

machines <- data.frame(
  Date = c("1/31/2014", "1/31/2014", "2/28/2014", "2/28/2014", "3/31/2014", "3/31/2014"), 
  Model.Num = c("123", "456", "123", "456", "123", "456"), 
  Cost = c(200, 300, 250, 350, 300, 400)
  )

my_fun <- function(data, col) {
  mutate_(data, .dots = setNames(paste0("cumsum(", col, ")"), "position"))
}

my_fun(machines %>% group_by(Date, Model.Num), "Cost")
# Source: local data frame [6 x 4]
# Groups: Date, Model.Num [6]
# 
# Date Model.Num  Cost position
# <fctr>    <fctr> <dbl>    <dbl>
# 1 1/31/2014       123   200      200
# 2 1/31/2014       456   300      300
# 3 2/28/2014       123   250      250
# 4 2/28/2014       456   350      350
# 5 3/31/2014       123   300      300
# 6 3/31/2014       456   400      400
my_fun(machines %>% group_by(Model.Num), "Cost")
# Source: local data frame [6 x 4]
# Groups: Model.Num [2]
# 
# Date Model.Num  Cost position
# <fctr>    <fctr> <dbl>    <dbl>
# 1 1/31/2014       123   200      200
# 2 1/31/2014       456   300      300
# 3 2/28/2014       123   250      450
# 4 2/28/2014       456   350      650
# 5 3/31/2014       123   300      750
# 6 3/31/2014       456   400     1050