通过带有不带引号的元素的显式参数指定要分组的多个变量

Specifying multiple variables to group by via explicit argument with unquoted elements

根据 Programming with dplyr 中关于 捕获多个参数 的部分,我试图指定

  1. 多个变量分组 dplyr::group_by

  2. 不依赖...而是使用显式列表参数group_vars

  3. 无需引用 arg 中的列表元素 group_vars

示例数据

df <- tibble::tribble(
  ~a,   ~b,  ~c,
  "A",  "a", 10,
  "A",  "a", 20,
  "A",  "b", 1000,
  "B",  "a", 5,
  "B",  "b", 1
)

基于 Programming with dplyr

中的 ... 的方法
# Approach 1 -----
my_summarise <- function(df, ...) {
  group_vars <- dplyr::enquos(...)

  df %>%
    dplyr::group_by(!!!group_vars) %>%
    dplyr::summarise(x = mean(c))
}

my_summarise(df, a, b)
#> # A tibble: 4 x 3
#> # Groups:   a [2]
#>   a     b         x
#>   <chr> <chr> <dbl>
#> 1 A     a        15
#> 2 A     b      1000
#> 3 B     a         5
#> 4 B     b         1

基于带引号元素的列表参数的方法:

# Approach 2 -----
my_summarise_2 <- function(df, group_vars = c("a", "b")) {
  group_vars <- dplyr::syms(group_vars)

  df %>%
    dplyr::group_by(!!!group_vars) %>%
    dplyr::summarise(x = mean(c))
}

my_summarise_2(df)
#> # A tibble: 4 x 3
#> # Groups:   a [2]
#>   a     b         x
#>   <chr> <chr> <dbl>
#> 1 A     a        15
#> 2 A     b      1000
#> 3 B     a         5
#> 4 B     b         1

my_summarise_2(df, group_vars = "a")
#> # A tibble: 2 x 2
#>   a         x
#>   <chr> <dbl>
#> 1 A      343.
#> 2 B        3

我找不到让我提供不带引号的列名的方法:

# Approach 3 -----
my_summarise_3 <- function(df, group_vars = list(a, b)) {
  group_vars <- dplyr::enquos(group_vars)

  df %>%
    dplyr::group_by(!!!group_vars) %>%
    dplyr::summarise(x = mean(c))
}

my_summarise_3(df)
#> Error: Column `list(a, b)` must be length 5 (the number of rows) or one, not 2

我想关键是最终得到一个与 调用 group_vars <- dplyr::enquos(...):

之后的一个
<list_of<quosure>>

[[1]]
<quosure>
expr: ^a
env:  global

[[2]]
<quosure>
expr: ^b
env:  global

我试图用 group_vars %>% purrr::map(dplyr::enquo) 来解决它,但当然 R 会抱怨 ab,因为它们需要评估。

主要问题是 list(a, b) 不捕获未计算的表达式 ab,而是计算这些表达式并创建包含结果的 two-element 列表。您基本上有两个选择:

解决方法一:使用rlang::exprs()捕捉实际的表情。由于表达式已经未计算,您不再需要在函数中使用 enquos,它只是变成了

my_summarise_3 <- function(df, group_vars = rlang::exprs(a, b)) {
  df %>%
    dplyr::group_by(!!!group_vars) %>%
    dplyr::summarise(x = mean(c))
}

my_summarise_3(df)
# # A tibble: 4 x 3
# # Groups:   a [2]
#   a     b         x
#   <chr> <chr> <dbl>
# 1 A     a        15
# 2 A     b      1000
# 3 B     a         5
# 4 B     b         1

此界面的缺点是用户现在负责引用(即捕获表达式)参数:

# Note that it can be done using quote() from base R
my_summarise_3(df, group_vars=quote(a))
# # A tibble: 2 x 2
#   a         x
#   <chr> <dbl>
# 1 A      343.
# 2 B        3 

解决方案二:完整捕获未计算的表达式list(a,b)并手动解析它。

## Helper function to recursively construct an abstract syntax tree
getAST <- function( ee ) { as.list(ee) %>% map_if(is.call, getAST) }

my_summarise_3 <- function(df, group_vars = list(a,b)) {
  ## Capture the expression and parse it
  ast <- rlang::enexpr(group_vars) %>% getAST()

  ## Identify symbols present in the data
  gvars <- unlist(ast) %>% map_chr(deparse) %>%
      intersect(names(df)) %>% rlang::syms()

  df %>%
      dplyr::group_by(!!!gvars) %>%
      dplyr::summarise(x = mean(c))
}

my_summarise_3(df, list(a,b))
# # A tibble: 4 x 3
# # Groups:   a [2]
#   a     b         x
#   <chr> <chr> <dbl>
# 1 A     a        15
# 2 A     b      1000
# 3 B     a         5
# 4 B     b         1

my_summarise_3(df, b)
# # A tibble: 2 x 2
#   b         x
#   <chr> <dbl>
# 1 a      11.7
# 2 b     500. 

我认为你只是想重新发明 vars() :

library(magrittr)
library(dplyr,warn.conflicts = FALSE)
#> Warning: package 'dplyr' was built under R version 3.6.1
df <- tibble::tribble(
  ~a,   ~b,  ~c,
  "A",  "a", 10,
  "A",  "a", 20,
  "A",  "b", 1000,
  "B",  "a", 5,
  "B",  "b", 1
)

my_summarise <- function(data, group_vars) {
  data %>%
    group_by_at(group_vars) %>%
    summarise(x = mean(c))
}

my_summarise(df, c("a","b"))
#> # A tibble: 4 x 3
#> # Groups:   a [2]
#>   a     b         x
#>   <chr> <chr> <dbl>
#> 1 A     a        15
#> 2 A     b      1000
#> 3 B     a         5
#> 4 B     b         1

my_summarise(df, vars(a, b))
#> # A tibble: 4 x 3
#> # Groups:   a [2]
#>   a     b         x
#>   <chr> <chr> <dbl>
#> 1 A     a        15
#> 2 A     b      1000
#> 3 B     a         5
#> 4 B     b         1

reprex package (v0.3.0)

于 2019-07-26 创建

如果你真的想要这个,这里有一个@Artem 解决方案的变体(但为什么?):

my_summarise <- function(df, group_vars) {
  quoted_group_vars <- rlang::list2(
    !!!as.list(enexpr(group_vars)[-1]))
  df %>%
    dplyr::group_by(!!!quoted_group_vars) %>%
    dplyr::summarise(x = mean(c))
}

my_summarise(df, list(a, b))
#> # A tibble: 4 x 3
#> # Groups:   a [2]
#>   a     b         x
#>   <chr> <chr> <dbl>
#> 1 A     a        15
#> 2 A     b      1000
#> 3 B     a         5
#> 4 B     b         1