Jenetics 约束似乎没有效果
Jenetics constraint seems to have no effect
我实现了 knapsack problem using Jenetics 的变体,如下所示:
@Value
public class Knapsack {
public static void main( final String[] args ) {
final var knapsackEngine = Engine.builder( Knapsack::fitness, Knapsack.codec() )
.constraint( Knapsack.constraint() )
.build();
final var bestPhenotype = knapsackEngine.stream()
.limit( 1000L )
.collect( EvolutionResult.toBestPhenotype() );
final var knapsack = bestPhenotype.getGenotype().getGene().getAllele();
final var profit = bestPhenotype.getFitness();
final var weight = knapsack.getWeight();
System.out.println( "Valid: " + bestPhenotype.isValid() );
System.out.println( String.format( "Solution: profit %d | weight %d", profit, weight ) );
System.out.println( String.format( "Optimum: profit %d | weight %d", Problem.OPTIMAL_PROFIT, Problem.OPTIMAL_WEIGHT ) );
}
List<Item> items;
public int getProfit() {
return items.stream()
.mapToInt( Item::getProfit )
.sum();
}
public int getWeight() {
return items.stream()
.mapToInt( Item::getWeight )
.sum();
}
private static Codec<Knapsack, AnyGene<Knapsack>> codec() {
return Codec.of(
Genotype.of( AnyChromosome.of( Knapsack::create ) ),
genotype -> genotype.getGene().getAllele() );
}
private static Knapsack create() {
final Random rand = RandomRegistry.getRandom();
final List<Item> items = Problem.ITEMS.stream()
.filter( item -> rand.nextBoolean() )
.collect( Collectors.toList() );
return new Knapsack( items );
}
private static int fitness( final Knapsack knapsack ) {
return knapsack.getProfit();
}
private static Constraint<AnyGene<Knapsack>, Integer> constraint() {
return Constraint.of( phenotype -> {
final Knapsack knapsack = phenotype.getGenotype().getGene().getAllele();
final int weight = knapsack.getItems().stream()
.mapToInt( Item::getWeight )
.sum();
return weight <= Problem.MAX_CAPACITY;
} );
}
}
@Value
是 Lombok and generates a bunch of code like a constructor, getters, etc. The Problem
class defines some constants for a particular knapsack problem (P07 from https://people.sc.fsu.edu/~jburkardt/datasets/knapsack_01/knapsack_01.html 的一部分):
public class Problem {
public static final int MAX_CAPACITY = 750;
public static final BitChromosome OPTIMAL_SOLUTION = BitChromosome.of( "101010111000011" );
public static final int OPTIMAL_PROFIT = 1458;
public static final int OPTIMAL_WEIGHT = 749;
private static final List<Integer> profits = List.of(
135, 139, 149, 150, 156,
163, 173, 184, 192, 201,
210, 214, 221, 229, 240 );
private static final List<Integer> weights = List.of(
70, 73, 77, 80, 82,
87, 90, 94, 98, 106,
110, 113, 115, 118, 120 );
public static final List<Item> ITEMS = IntStream.range( 0, profits.size() )
.mapToObj( i -> new Item( profits.get( i ), weights.get( i ) ) )
.collect( Collectors.toList() );
}
虽然 Jenetics user guide 说(见第 2.5 节):
A given problem should usually encoded in a way, that it is not possible for the evolution Engine
to create invalid individuals (Genotypes
).
我想知道为什么引擎会不断创建重量超过背包最大容量的解决方案。因此,尽管这些解决方案根据给定的 Constraint
、Phenotype#isValid()
returns true
.
是无效的
我可以通过将适应度函数更改为来解决此问题:
private static int fitness( final Knapsack knapsack ) {
final int profit = knapsack.getProfit();
final int weight = knapsack.getWeight();
return weight <= Problem.MAX_CAPACITY ? profit : 0;
}
或者通过确保编解码器只能创建有效的解决方案:
private static Knapsack create() {
final Random rand = RandomRegistry.getRandom();
final List<Item> items = Problem.ITEMS.stream()
.filter( item -> rand.nextBoolean() )
.collect( Collectors.toList() );
final Knapsack knapsack = new Knapsack( items );
return knapsack.getWeight() <= Problem.MAX_CAPACITY ? knapsack : create();
}
但是如果没有效果的话Constraint
还有什么用呢?
我在最新版本的 Jenetics 中引入了 Constraint
界面。在检查个人有效性时,它是最后一道防线。在您的示例中,您使用了 Constraint
接口的工厂方法,它只采用有效性谓词。 Constraint
的第二个重要方法是 repair
方法。此方法尝试 修复 给定的个体。如果不定义此方法,只会创建一个新的随机表型。由于这个接口是新的,我似乎没有很好地解释 Constraint
接口的预期用途。在第二个示例中,它在我的议程上 #541. One possible usage example is given in #540。
void constrainedVersion() {
final Codec<double[], DoubleGene> codec = Codecs
.ofVector(DoubleRange.of(0, 1), 4);
final Constraint<DoubleGene, Double> constraint = Constraint.of(
pt -> isValid(codec.decode(pt.getGenotype())),
(pt, g) -> {
final double[] r = normalize(codec.decode(pt.getGenotype()));
return newPT(r, g);
}
);
}
private static Phenotype<DoubleGene, Double> newPT(final double[] r, final long gen) {
final Genotype<DoubleGene> gt = Genotype.of(
DoubleChromosome.of(
DoubleStream.of(r).boxed()
.map(v -> DoubleGene.of(v, DoubleRange.of(0, 1)))
.collect(ISeq.toISeq())
)
);
return Phenotype.of(gt, gen);
}
private static boolean isValid(final double[] x) {
return x[0] + x[1] + x[2] == 1 && x[3] > 0.8;
}
private static double[] normalize(final double[] x) {
double[] r = x;
final double sum = r[0] + r[1] + r[2];
if (sum != 1) {
r[0] /= sum;
r[1] /= sum;
r[2] /= sum;
}
if (r[3] > 0.8) {
r[3] = 0.8;
}
return r;
}
和Phenotype::isValid
方法returnstrue
,因为它是一个local有效性检查,它只检查是否所有的染色体和基因个人有效或在有效范围内。
我希望我能回答你的问题,并且正在提供一个(或多个)示例的更好描述。另一方面:如果您对 Constraint
界面的良好用法示例有任何想法,请告诉我。
我实现了 knapsack problem using Jenetics 的变体,如下所示:
@Value
public class Knapsack {
public static void main( final String[] args ) {
final var knapsackEngine = Engine.builder( Knapsack::fitness, Knapsack.codec() )
.constraint( Knapsack.constraint() )
.build();
final var bestPhenotype = knapsackEngine.stream()
.limit( 1000L )
.collect( EvolutionResult.toBestPhenotype() );
final var knapsack = bestPhenotype.getGenotype().getGene().getAllele();
final var profit = bestPhenotype.getFitness();
final var weight = knapsack.getWeight();
System.out.println( "Valid: " + bestPhenotype.isValid() );
System.out.println( String.format( "Solution: profit %d | weight %d", profit, weight ) );
System.out.println( String.format( "Optimum: profit %d | weight %d", Problem.OPTIMAL_PROFIT, Problem.OPTIMAL_WEIGHT ) );
}
List<Item> items;
public int getProfit() {
return items.stream()
.mapToInt( Item::getProfit )
.sum();
}
public int getWeight() {
return items.stream()
.mapToInt( Item::getWeight )
.sum();
}
private static Codec<Knapsack, AnyGene<Knapsack>> codec() {
return Codec.of(
Genotype.of( AnyChromosome.of( Knapsack::create ) ),
genotype -> genotype.getGene().getAllele() );
}
private static Knapsack create() {
final Random rand = RandomRegistry.getRandom();
final List<Item> items = Problem.ITEMS.stream()
.filter( item -> rand.nextBoolean() )
.collect( Collectors.toList() );
return new Knapsack( items );
}
private static int fitness( final Knapsack knapsack ) {
return knapsack.getProfit();
}
private static Constraint<AnyGene<Knapsack>, Integer> constraint() {
return Constraint.of( phenotype -> {
final Knapsack knapsack = phenotype.getGenotype().getGene().getAllele();
final int weight = knapsack.getItems().stream()
.mapToInt( Item::getWeight )
.sum();
return weight <= Problem.MAX_CAPACITY;
} );
}
}
@Value
是 Lombok and generates a bunch of code like a constructor, getters, etc. The Problem
class defines some constants for a particular knapsack problem (P07 from https://people.sc.fsu.edu/~jburkardt/datasets/knapsack_01/knapsack_01.html 的一部分):
public class Problem {
public static final int MAX_CAPACITY = 750;
public static final BitChromosome OPTIMAL_SOLUTION = BitChromosome.of( "101010111000011" );
public static final int OPTIMAL_PROFIT = 1458;
public static final int OPTIMAL_WEIGHT = 749;
private static final List<Integer> profits = List.of(
135, 139, 149, 150, 156,
163, 173, 184, 192, 201,
210, 214, 221, 229, 240 );
private static final List<Integer> weights = List.of(
70, 73, 77, 80, 82,
87, 90, 94, 98, 106,
110, 113, 115, 118, 120 );
public static final List<Item> ITEMS = IntStream.range( 0, profits.size() )
.mapToObj( i -> new Item( profits.get( i ), weights.get( i ) ) )
.collect( Collectors.toList() );
}
虽然 Jenetics user guide 说(见第 2.5 节):
A given problem should usually encoded in a way, that it is not possible for the evolution
Engine
to create invalid individuals (Genotypes
).
我想知道为什么引擎会不断创建重量超过背包最大容量的解决方案。因此,尽管这些解决方案根据给定的 Constraint
、Phenotype#isValid()
returns true
.
我可以通过将适应度函数更改为来解决此问题:
private static int fitness( final Knapsack knapsack ) {
final int profit = knapsack.getProfit();
final int weight = knapsack.getWeight();
return weight <= Problem.MAX_CAPACITY ? profit : 0;
}
或者通过确保编解码器只能创建有效的解决方案:
private static Knapsack create() {
final Random rand = RandomRegistry.getRandom();
final List<Item> items = Problem.ITEMS.stream()
.filter( item -> rand.nextBoolean() )
.collect( Collectors.toList() );
final Knapsack knapsack = new Knapsack( items );
return knapsack.getWeight() <= Problem.MAX_CAPACITY ? knapsack : create();
}
但是如果没有效果的话Constraint
还有什么用呢?
我在最新版本的 Jenetics 中引入了 Constraint
界面。在检查个人有效性时,它是最后一道防线。在您的示例中,您使用了 Constraint
接口的工厂方法,它只采用有效性谓词。 Constraint
的第二个重要方法是 repair
方法。此方法尝试 修复 给定的个体。如果不定义此方法,只会创建一个新的随机表型。由于这个接口是新的,我似乎没有很好地解释 Constraint
接口的预期用途。在第二个示例中,它在我的议程上 #541. One possible usage example is given in #540。
void constrainedVersion() {
final Codec<double[], DoubleGene> codec = Codecs
.ofVector(DoubleRange.of(0, 1), 4);
final Constraint<DoubleGene, Double> constraint = Constraint.of(
pt -> isValid(codec.decode(pt.getGenotype())),
(pt, g) -> {
final double[] r = normalize(codec.decode(pt.getGenotype()));
return newPT(r, g);
}
);
}
private static Phenotype<DoubleGene, Double> newPT(final double[] r, final long gen) {
final Genotype<DoubleGene> gt = Genotype.of(
DoubleChromosome.of(
DoubleStream.of(r).boxed()
.map(v -> DoubleGene.of(v, DoubleRange.of(0, 1)))
.collect(ISeq.toISeq())
)
);
return Phenotype.of(gt, gen);
}
private static boolean isValid(final double[] x) {
return x[0] + x[1] + x[2] == 1 && x[3] > 0.8;
}
private static double[] normalize(final double[] x) {
double[] r = x;
final double sum = r[0] + r[1] + r[2];
if (sum != 1) {
r[0] /= sum;
r[1] /= sum;
r[2] /= sum;
}
if (r[3] > 0.8) {
r[3] = 0.8;
}
return r;
}
和Phenotype::isValid
方法returnstrue
,因为它是一个local有效性检查,它只检查是否所有的染色体和基因个人有效或在有效范围内。
我希望我能回答你的问题,并且正在提供一个(或多个)示例的更好描述。另一方面:如果您对 Constraint
界面的良好用法示例有任何想法,请告诉我。