如何创建计划目标以交叉先前地图目标和新变量的结果?
How to create a plan target to cross over the results of previous map targets and a new variable?
从使用地图创建的多个目标 (a
) 我有 2 个其他目标(b
和 d
)迭代第一个目标。现在我想在另一个目标中使用这些目标的结果。另外我想与另一个变量交叉(model
)。
我在下面粘贴了一个代表,但在我的例子中,a
描述了数据集的不同子集,b
和 d
预先计算了一些东西,e
使用预先计算的数据对每个子集应用不同的模型。
我尝试了 map
cross
的不同组合(如下面的 e
)但没有成功。我试图在 fn4 之后添加我想使用的所有目标名称,但它创建了不必要的交叉。
library(drake)
drake_plan(
a = target(
fn1(arg1, arg2),
transform = map(
arg1 = !!c("arg11", "arg12"),
arg2 = !!c("arg21", "arg22")
)
),
b = target(
fn2(arg1),
transform = map(arg1)
),
d = target(
fn3(arg1),
transform = map(arg1)
),
e = target(
fn4(b, d, model, arg1),
transform = cross(
b,
d,
model = !!c("x", "y", "z"),
.by = arg1,
.id = c(arg1, model)
)
),
trace = TRUE
)
#> # A tibble: 18 x 10
#> target command arg1 arg2 a b d model .by e
#> <chr> <expr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 a_arg11… fn1("arg11… "\"arg… "\"ar… a_arg… <NA> <NA> <NA> <NA> <NA>
#> 2 a_arg12… fn1("arg12… "\"arg… "\"ar… a_arg… <NA> <NA> <NA> <NA> <NA>
#> 3 b_arg11 fn2("arg11… "\"arg… "\"ar… a_arg… b_ar… <NA> <NA> <NA> <NA>
#> 4 b_arg12 fn2("arg12… "\"arg… "\"ar… a_arg… b_ar… <NA> <NA> <NA> <NA>
#> 5 d_arg11 fn3("arg11… "\"arg… "\"ar… a_arg… <NA> d_ar… <NA> <NA> <NA>
#> 6 d_arg12 fn3("arg12… "\"arg… "\"ar… a_arg… <NA> d_ar… <NA> <NA> <NA>
#> 7 e_NA_x fn4(b_arg1… <NA> <NA> <NA> b_ar… d_ar… "\"x… arg1 e_NA…
#> 8 e_NA_y fn4(b_arg1… <NA> <NA> <NA> b_ar… d_ar… "\"y… arg1 e_NA…
#> 9 e_NA_z fn4(b_arg1… <NA> <NA> <NA> b_ar… d_ar… "\"z… arg1 e_NA…
#> 10 e_NA_x_2 fn4(b_arg1… <NA> <NA> <NA> b_ar… d_ar… "\"x… arg1 e_NA…
#> 11 e_NA_y_2 fn4(b_arg1… <NA> <NA> <NA> b_ar… d_ar… "\"y… arg1 e_NA…
#> 12 e_NA_z_2 fn4(b_arg1… <NA> <NA> <NA> b_ar… d_ar… "\"z… arg1 e_NA…
#> 13 e_NA_x_3 fn4(b_arg1… <NA> <NA> <NA> b_ar… d_ar… "\"x… arg1 e_NA…
#> 14 e_NA_y_3 fn4(b_arg1… <NA> <NA> <NA> b_ar… d_ar… "\"y… arg1 e_NA…
#> 15 e_NA_z_3 fn4(b_arg1… <NA> <NA> <NA> b_ar… d_ar… "\"z… arg1 e_NA…
#> 16 e_NA_x_4 fn4(b_arg1… <NA> <NA> <NA> b_ar… d_ar… "\"x… arg1 e_NA…
#> 17 e_NA_y_4 fn4(b_arg1… <NA> <NA> <NA> b_ar… d_ar… "\"y… arg1 e_NA…
#> 18 e_NA_z_4 fn4(b_arg1… <NA> <NA> <NA> b_ar… d_ar… "\"z… arg1 e_NA…
由 reprex package (v0.3.0)
于 2019-07-15 创建
它似乎可以工作,但是 arg1
和 arg2
没有被继承并且在 fn4
和后续目标中不可用。我应该把这一步分成两步吗?如果是这样的话怎么办? (map
then cross
, cross
then map
?) 我试着早点穿过,在 a
之后,但我不想重新计算相同的 b
和d
多次,可能会占用大量时间和内存。
编辑:一个更真实的例子
因为许多目标使用相同的数据,这些数据需要保存为 run
函数的文件(调用外部二进制文件),所以要防止多次重新计算同一事物并保存多个在不同的文件中重复相同的事情(taht 可能很大)我在 Drake 中将所有这些任务分开。
library(drake)
library(tibble)
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
path_data <- c("path/data_1.csv", "path/data_2.csv")
countries <- c("1", "2")
analysis_dir <- "path"
substudies_1 <- tribble(
~substudy, ~adjust, ~sex,
"sub1", "no", "male/female",
"sub2", "yes", "male/female"
)
models <- c("x", "y")
plan <- drake_plan(
data = target(
get_data(file_in(path)),
transform = map(path = !!path_data, country = !!countries, .id = country)
),
SNP = target(
get_SNP_data_country(SNP_gene, data),
transform = map(data, .id = country)
),
map = target(
# actually write file and save path
write_snp_map(SNP, file.path(analysis_dir, country, "SNP_map.txt")),
transform = map(SNP, .id = country)
),
ref = target(
# actually write file and save path
write_snp_ref(SNP, file.path(analysis_dir, country, "SNP_ref.txt")),
transform = map(SNP, .id = country)
),
# data_2 is managed in another target because it has a different set of substudies,
# this maybe can be tidied up, a problem for another day...
population_1 = target(
extract_population(data, sex, adjust),
transform = map(
data = data_1,
country = "1",
.data = !!substudies_1,
.id = c(substudy)
),
),
pedigree_1 = target(
extract_pedigree(data_1, population_1),
transform = map(
population_1,
.id = substudy
)
),
covariable_1 = target(
extract_covariable(data_1, population_1, adjust, sex),
transform = map(
population_1,
.id = substudy
)
),
# run_1 = target(
# run_fn(map_1, ref_1, pedigree_1, covariable_1, substudy, model, adjust, sex),
# transform = cross(population_1, model = !!models)
# ),
trace = TRUE
)
# the desired plan for the run target
run_plan <- tibble(
target = c("run_1_x_population_1_sub1", "run_1_y_population_1_sub1", "run_1_x_population_1_sub2", "run_1_y_population_1_sub2"),
command = list(
expr(run(map_1, ref_1, pedigree_1_sub1, covariable_1_sub1, "x", "sub1", "no")),
expr(run(map_1, ref_1, pedigree_1_sub1, covariable_1_sub1, "y", "sub1", "no")),
expr(run(map_1, ref_1, pedigree_1_sub2, covariable_1_sub2, "x", "sub2", "yes")),
expr(run(map_1, ref_1, pedigree_1_sub2, covariable_1_sub2, "y", "sub2", "yes"))
),
path = NA_character_,
country = "1",
population_1 = c(rep("population_1_sub1", 2), rep("population_1_sub2", 2)),
substudy = c(rep("sub1", 2), rep("sub2", 2)),
adjust = c(rep("no", 2), rep("yes", 2)),
sex = c(rep("male/female", 4)),
pedigree_1 = c(rep("pedigree_1_sub1", 2), rep("pedigree_1_sub2", 2)),
covariable_1 = c(rep("covariable_1_sub1", 2), rep("covariable_1_sub2", 2)),
model = c("x", "y", "x", "y"),
SNP = "SNP_1",
map = "map_1",
ref = "ref_1"
)
config <- drake_config(bind_rows(plan, run_plan))
vis_drake_graph(config, targets_only = TRUE)
由 reprex package (v0.3.0)
于 2019-07-15 创建
编辑 2:
我现在在地图转换中使用 .data
参数,使用具有先前目标名称的数据框(使用 rlang::syms
)它工作正常,除了它不适用于 drake::drake_plan
的 max_expand
参数。这个解决方案也不是最佳的,因为为 .data
制作网格非常冗长。
您介意在不进行任何转换的情况下明确发布您想要的计划吗? drake_plan_source()
可以提供帮助。
请注意:只有 combine()
理解 .by
。也许另一种方法是使用 transform = map(.data = !!your_grid_of_combinations)
: https://ropenscilabs.github.io/drake-manual/plans.html#map.
你想要的方案是不是这样的?
library(drake)
plan <- drake_plan(
a = target(
fn1(arg1, arg2),
transform = map(
arg1 = !!c("arg11", "arg12"),
arg2 = !!c("arg21", "arg22")
)
),
b = target(
fn2(arg1),
transform = map(arg1)
),
d = target(
fn3(arg1),
transform = map(arg1)
),
e = target(
fn4(b, d, model, arg1),
transform = cross(
b,
d,
model = c("x", "y", "z"),
arg1,
.id = c(arg1, model)
)
)
)
config <- drake_config(plan)
vis_drake_graph(config)
由 reprex package (v0.3.0)
于 2019-07-15 创建
从使用地图创建的多个目标 (a
) 我有 2 个其他目标(b
和 d
)迭代第一个目标。现在我想在另一个目标中使用这些目标的结果。另外我想与另一个变量交叉(model
)。
我在下面粘贴了一个代表,但在我的例子中,a
描述了数据集的不同子集,b
和 d
预先计算了一些东西,e
使用预先计算的数据对每个子集应用不同的模型。
我尝试了 map
cross
的不同组合(如下面的 e
)但没有成功。我试图在 fn4 之后添加我想使用的所有目标名称,但它创建了不必要的交叉。
library(drake)
drake_plan(
a = target(
fn1(arg1, arg2),
transform = map(
arg1 = !!c("arg11", "arg12"),
arg2 = !!c("arg21", "arg22")
)
),
b = target(
fn2(arg1),
transform = map(arg1)
),
d = target(
fn3(arg1),
transform = map(arg1)
),
e = target(
fn4(b, d, model, arg1),
transform = cross(
b,
d,
model = !!c("x", "y", "z"),
.by = arg1,
.id = c(arg1, model)
)
),
trace = TRUE
)
#> # A tibble: 18 x 10
#> target command arg1 arg2 a b d model .by e
#> <chr> <expr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 a_arg11… fn1("arg11… "\"arg… "\"ar… a_arg… <NA> <NA> <NA> <NA> <NA>
#> 2 a_arg12… fn1("arg12… "\"arg… "\"ar… a_arg… <NA> <NA> <NA> <NA> <NA>
#> 3 b_arg11 fn2("arg11… "\"arg… "\"ar… a_arg… b_ar… <NA> <NA> <NA> <NA>
#> 4 b_arg12 fn2("arg12… "\"arg… "\"ar… a_arg… b_ar… <NA> <NA> <NA> <NA>
#> 5 d_arg11 fn3("arg11… "\"arg… "\"ar… a_arg… <NA> d_ar… <NA> <NA> <NA>
#> 6 d_arg12 fn3("arg12… "\"arg… "\"ar… a_arg… <NA> d_ar… <NA> <NA> <NA>
#> 7 e_NA_x fn4(b_arg1… <NA> <NA> <NA> b_ar… d_ar… "\"x… arg1 e_NA…
#> 8 e_NA_y fn4(b_arg1… <NA> <NA> <NA> b_ar… d_ar… "\"y… arg1 e_NA…
#> 9 e_NA_z fn4(b_arg1… <NA> <NA> <NA> b_ar… d_ar… "\"z… arg1 e_NA…
#> 10 e_NA_x_2 fn4(b_arg1… <NA> <NA> <NA> b_ar… d_ar… "\"x… arg1 e_NA…
#> 11 e_NA_y_2 fn4(b_arg1… <NA> <NA> <NA> b_ar… d_ar… "\"y… arg1 e_NA…
#> 12 e_NA_z_2 fn4(b_arg1… <NA> <NA> <NA> b_ar… d_ar… "\"z… arg1 e_NA…
#> 13 e_NA_x_3 fn4(b_arg1… <NA> <NA> <NA> b_ar… d_ar… "\"x… arg1 e_NA…
#> 14 e_NA_y_3 fn4(b_arg1… <NA> <NA> <NA> b_ar… d_ar… "\"y… arg1 e_NA…
#> 15 e_NA_z_3 fn4(b_arg1… <NA> <NA> <NA> b_ar… d_ar… "\"z… arg1 e_NA…
#> 16 e_NA_x_4 fn4(b_arg1… <NA> <NA> <NA> b_ar… d_ar… "\"x… arg1 e_NA…
#> 17 e_NA_y_4 fn4(b_arg1… <NA> <NA> <NA> b_ar… d_ar… "\"y… arg1 e_NA…
#> 18 e_NA_z_4 fn4(b_arg1… <NA> <NA> <NA> b_ar… d_ar… "\"z… arg1 e_NA…
由 reprex package (v0.3.0)
于 2019-07-15 创建它似乎可以工作,但是 arg1
和 arg2
没有被继承并且在 fn4
和后续目标中不可用。我应该把这一步分成两步吗?如果是这样的话怎么办? (map
then cross
, cross
then map
?) 我试着早点穿过,在 a
之后,但我不想重新计算相同的 b
和d
多次,可能会占用大量时间和内存。
编辑:一个更真实的例子
因为许多目标使用相同的数据,这些数据需要保存为 run
函数的文件(调用外部二进制文件),所以要防止多次重新计算同一事物并保存多个在不同的文件中重复相同的事情(taht 可能很大)我在 Drake 中将所有这些任务分开。
library(drake)
library(tibble)
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
path_data <- c("path/data_1.csv", "path/data_2.csv")
countries <- c("1", "2")
analysis_dir <- "path"
substudies_1 <- tribble(
~substudy, ~adjust, ~sex,
"sub1", "no", "male/female",
"sub2", "yes", "male/female"
)
models <- c("x", "y")
plan <- drake_plan(
data = target(
get_data(file_in(path)),
transform = map(path = !!path_data, country = !!countries, .id = country)
),
SNP = target(
get_SNP_data_country(SNP_gene, data),
transform = map(data, .id = country)
),
map = target(
# actually write file and save path
write_snp_map(SNP, file.path(analysis_dir, country, "SNP_map.txt")),
transform = map(SNP, .id = country)
),
ref = target(
# actually write file and save path
write_snp_ref(SNP, file.path(analysis_dir, country, "SNP_ref.txt")),
transform = map(SNP, .id = country)
),
# data_2 is managed in another target because it has a different set of substudies,
# this maybe can be tidied up, a problem for another day...
population_1 = target(
extract_population(data, sex, adjust),
transform = map(
data = data_1,
country = "1",
.data = !!substudies_1,
.id = c(substudy)
),
),
pedigree_1 = target(
extract_pedigree(data_1, population_1),
transform = map(
population_1,
.id = substudy
)
),
covariable_1 = target(
extract_covariable(data_1, population_1, adjust, sex),
transform = map(
population_1,
.id = substudy
)
),
# run_1 = target(
# run_fn(map_1, ref_1, pedigree_1, covariable_1, substudy, model, adjust, sex),
# transform = cross(population_1, model = !!models)
# ),
trace = TRUE
)
# the desired plan for the run target
run_plan <- tibble(
target = c("run_1_x_population_1_sub1", "run_1_y_population_1_sub1", "run_1_x_population_1_sub2", "run_1_y_population_1_sub2"),
command = list(
expr(run(map_1, ref_1, pedigree_1_sub1, covariable_1_sub1, "x", "sub1", "no")),
expr(run(map_1, ref_1, pedigree_1_sub1, covariable_1_sub1, "y", "sub1", "no")),
expr(run(map_1, ref_1, pedigree_1_sub2, covariable_1_sub2, "x", "sub2", "yes")),
expr(run(map_1, ref_1, pedigree_1_sub2, covariable_1_sub2, "y", "sub2", "yes"))
),
path = NA_character_,
country = "1",
population_1 = c(rep("population_1_sub1", 2), rep("population_1_sub2", 2)),
substudy = c(rep("sub1", 2), rep("sub2", 2)),
adjust = c(rep("no", 2), rep("yes", 2)),
sex = c(rep("male/female", 4)),
pedigree_1 = c(rep("pedigree_1_sub1", 2), rep("pedigree_1_sub2", 2)),
covariable_1 = c(rep("covariable_1_sub1", 2), rep("covariable_1_sub2", 2)),
model = c("x", "y", "x", "y"),
SNP = "SNP_1",
map = "map_1",
ref = "ref_1"
)
config <- drake_config(bind_rows(plan, run_plan))
vis_drake_graph(config, targets_only = TRUE)
由 reprex package (v0.3.0)
于 2019-07-15 创建编辑 2:
我现在在地图转换中使用 .data
参数,使用具有先前目标名称的数据框(使用 rlang::syms
)它工作正常,除了它不适用于 drake::drake_plan
的 max_expand
参数。这个解决方案也不是最佳的,因为为 .data
制作网格非常冗长。
您介意在不进行任何转换的情况下明确发布您想要的计划吗? drake_plan_source()
可以提供帮助。
请注意:只有 combine()
理解 .by
。也许另一种方法是使用 transform = map(.data = !!your_grid_of_combinations)
: https://ropenscilabs.github.io/drake-manual/plans.html#map.
你想要的方案是不是这样的?
library(drake)
plan <- drake_plan(
a = target(
fn1(arg1, arg2),
transform = map(
arg1 = !!c("arg11", "arg12"),
arg2 = !!c("arg21", "arg22")
)
),
b = target(
fn2(arg1),
transform = map(arg1)
),
d = target(
fn3(arg1),
transform = map(arg1)
),
e = target(
fn4(b, d, model, arg1),
transform = cross(
b,
d,
model = c("x", "y", "z"),
arg1,
.id = c(arg1, model)
)
)
)
config <- drake_config(plan)
vis_drake_graph(config)
由 reprex package (v0.3.0)
于 2019-07-15 创建