Pandas 求每小时滚动平均值

Pandas find hourly rolling average

我的数据集 df 看起来像这样。这是一个基于 minute 的数据集。

time, Open, High
2017-01-01 00:00:00, 1.2432, 1.1234
2017-01-01 00:01:00, 1.2432, 1.1234
2017-01-01 00:02:00, 1.2332, 1.1234
2017-01-01 00:03:00, 1.2132, 1.1234
...., ...., ....
2017-12-31 23:59:00, 1.2132, 1.1234

我想为 Open 列找到每小时 rolling mean,但它应该是灵活的,这样我也可以为其他列找到每小时 rolling mean

我做了什么?

我能够找到如下所示的 daily rolling average

# Pandas code to find the rolling mean for a single day

df
.assign(1davg=df.rolling(window=1*24*60)['Open'].mean()) 
.groupby(df['time'].dt.date) 
.last() 

请注意,将此(window=1*24*60 更改为 window=60)行代码不起作用,因为我已经尝试过了。

新的 output 应该是这样的:

time,                 Open,  High,   Open_hour_avg
2017-01-01 00:00:00, 1.2432, 1.1234,   1.2532
2017-01-01 01:00:00, 1.2432, 1.1234,   1.2632    
2017-01-01 02:00:00, 1.2332, 1.1234,   1.2332
2017-01-01 03:00:00, 1.2132, 1.1234,   1.2432
...., ...., ...., ....
2017-12-31 23:00:00, 1.2132, 1.1234,   1.2232

这里,

2017-01-01 00:00:00, 1.2432, 1.1234, 1.2532midnight

minute 平均数据

2017-01-01 01:00:00, 1.2432, 1.1234, 1.26321 AM

minute 平均数据

我们可以

df['open_ave_hour']=df.groupby(df.time.dt.strftime('%H:%M:%S')).Open.mean().reindex(df.time.dt.strftime('%H:%M:%S')).to_numpy()

或变换

df['open_ave_hour']=df.groupby(df.time.dt.strftime('%H:%M:%S')).Open.transform('mean')

我是这样工作的:

import pandas as pd

# After your CSV data is in a df

df['time'] = pd.to_datetime(df['time'])
df.index = df['time']
df_mean = df.resample('H').mean()


time,                 Open       High   
2017-01-01 00:00:00 1.051488    1.051500     
2017-01-01 01:00:00 1.051247    1.051275     
2017-01-01 02:00:00 1.051890    1.051957     
2017-01-01 03:00:00 1.051225    1.051290     
...., ...., ....
2017-12-31 23:00:00 1.051225    1.051290