如何对 Python 中的特定数据列应用 Shapiro-Wilk 检验

How to apply the Shapiro-Wilk Test on a specific data column in Python

我想对 SPY 的每日百分比 return 应用此测试。从 Yahoo 获取该品种的历史数据后,我每天计算 returns 的百分比(如您在下面的代码中所见)。但是当我应用测试时,P 值始终为“1.00”,统计数据的 return 始终为“nan”。无论我更改数据日期还是更改符号(例如,QQQ 代替 SPY)

下面你可以看到我正在使用的代码:

from datetime import date
import pandas_datareader as dr
from scipy.stats import shapiro

df = dr.data.get_data_yahoo('spy',start='2010-01-01',end='2015-01-01')
df['PCT'] = df['Close'].pct_change()

stat, p = shapiro(df['PCT'])
print('Statistics=%.3f, p=%.3f' % (stat, p))

不幸的是,我尝试了不同的方法,但找不到解决方案。我被它困住了。关于如何将其正确应用于 PCT 列数据的任何想法?任何帮助都将非常受欢迎!谢谢!

Step 1: "when I apply the test the P value is always “1.00” and the return of the stats is always “nan

不,先生,不是。

print( 'Statistics\n(W)= %e,\n p = %e' % ( stat, p ) ) # will produce:
...    
(W)= 9.438160e-01
 p = 1.909053e-21

核心问题是,尊重事物的运作方式:

>>> df['PCT'] = df['Close'].pct_change() # this computes & stores .pct_change()
>>> df                                   # read print( df['Close'].pct_change.__doc__ )

                  High  ...       Close       Volume   Adj Close       PCT
Date                                                                                         
2010-01-04  113.389999  ...  113.330002  118944600.0   93.675278       NaN
2010-01-05  113.680000  ...  113.629997  111579900.0   93.923241  0.002647
2010-01-06  113.989998  ...  113.709999  116074400.0   93.989357  0.000704
2010-01-07  114.330002  ...  114.190002  131091100.0   94.386139  0.004221
2010-01-08  114.620003  ...  114.570000  126402800.0   94.700218  0.003328
...

显然,由于 period == 1,单元格 df['PCT'][0] 是并且必须是 NaN

因此,调用 W_stat, p_value = shapiro( df['PCT'][1:] ) 不要包含没有意义的值 w.r.t。 shapiro()

print( shapiro.__doc__ ) # for more details

将值与参考样本进行比较 - 正态分布测试,其中 没有 NaN-s 直接导致必须拒绝 null-hypothesis p == 1绝对肯定的拒绝(从两个"incomparable-due-to-NaN(s)"组比较的角度来看,这显然是正确的)。


同样{ SPY | QQQ | AAPL | AMZN | ... }

>>> shapiro( dr.data.get_data_yahoo( 'SPY',
                                      start = '2010-01-01',
                                      end   = '2015-01-01'
                                      )['Close'].pct_change()[1:]
             )
(0.943816065788269, 1.9090532861060437e-21)

>>> shapiro( dr.data.get_data_yahoo( 'QQQ',
                                      start = '2010-01-01',
                                      end   = '2015-01-01'
                                      )['Close'].pct_change()[1:]
             )
(0.9631340503692627, 2.548133516564297e-17)

>>> shapiro( dr.data.get_data_yahoo( 'AAPL',
                                      start = '2010-01-01',
                                      end   = '2015-01-01'
                                      )['Close'].pct_change()[1:]
             )
(0.9560988545417786, 5.674560331738808e-19)

>>> shapiro( dr.data.get_data_yahoo( 'AMZN',
                                      start = '2010-01-01',
                                      end   = '2015-01-01'
                                      )['Close'].pct_change()[1:]
             )
(0.9394155740737915, 3.106424182886848e-22)