根据几列生成一系列新行

Generate a sequence of new rows based on a few columns

我想为数据框中的一组变量按顺序创建新行。例如,我有这些虚拟数据

data1 <- data.frame(id = c('JUJ', 'SJD'), 
                    sex = c('male', 'female'),
                    year = c(2000, 2010),
                    age = c(48, 75), blood = c(6.85, 4.6))
data1

| id  | sex    | year | age | blood |
|-----|--------|------|-----|-------|
| JUJ | male   | 2000 | 48  | 6.85  |
| SJD | female | 2010 | 75  | 4.6   |

我想为每个 id 再生成 4 个观察结果(作为行)。对于 yearage,每个新行都应比上一行大 1 个单位。对于某些变量,例如在这些数据中,sexblood 应该在所有行中保持相同。

我确信 R 中的 seq() 函数可以工作,但我如何才能找到正确的使用方法。如果解决方案包含 tidyverse 函数,我会更喜欢。

最后,数据看起来像这样

data2 <- data.frame(id = c('JUJ', 'JUJ', 'JUJ', 'JUJ', 'SJD', 'SJD', 
                   'SJD', 'SJD'), 
                    sex = c('male', 'male', 'male', 'male', 'female', 
                   'female', 'female', 'female'),
                    year = c(2000, 2001, 2002, 2003, 2010, 2011, 2012, 2013),
                    age = c(48, 49, 50, 51, 75, 76, 77, 78), 
                    blood = c(6.85, 6.85, 6.85, 6.85, 4.6, 4.6, 4.6, 4.6))
data2

| id  | sex    | year | age | blood |
|-----|--------|------|-----|-------|
| JUJ | male   | 2000 | 48  | 6.85  |
| JUJ | male   | 2001 | 49  | 6.85  |
| JUJ | male   | 2002 | 50  | 6.85  |
| JUJ | male   | 2003 | 51  | 6.85  |
| SJD | female | 2010 | 75  | 4.6   |
| SJD | female | 2011 | 76  | 4.6   |
| SJD | female | 2012 | 77  | 4.6   |
| SJD | female | 2013 | 78  | 4.6   |

我们可以使用 slice 重复行 n 次,group_by id 并依次递增 ageyear 列。

library(dplyr)

n <- 4
data1 %>%
  slice(rep(seq_len(n()), each = n)) %>%
  group_by(id) %>%
  mutate_at(vars(year, age), ~. + 0:(n - 1))

#  id    sex     year   age blood
#  <fct> <fct>  <dbl> <dbl> <dbl>
#1 JUJ   male    2000    48  6.85
#2 JUJ   male    2001    49  6.85
#3 JUJ   male    2002    50  6.85
#4 JUJ   male    2003    51  6.85
#5 SJD   female  2010    75  4.6 
#6 SJD   female  2011    76  4.6 
#7 SJD   female  2012    77  4.6 
#8 SJD   female  2013    78  4.6 

另一种 dplyrtidyr 的可能性是:

data1 %>%
 group_by(id) %>%
 uncount(4) %>%
 mutate_at(vars(year, age), ~ . + row_number() - 1)

  id    sex     year   age blood
  <fct> <fct>  <dbl> <dbl> <dbl>
1 JUJ   male    2000    48  6.85
2 JUJ   male    2001    49  6.85
3 JUJ   male    2002    50  6.85
4 JUJ   male    2003    51  6.85
5 SJD   female  2010    75  4.6 
6 SJD   female  2011    76  4.6 
7 SJD   female  2012    77  4.6 
8 SJD   female  2013    78  4.6

另一个tidyverse解决方案:

library(tidyverse)

data1 %>% 
  mutate_at(vars(year, age), list(~ map(. ,~seq(.x, .x + 4 - 1))))%>% 
  unnest %>% select(-blood, blood)
#>    id    sex year age blood
#> 1 JUJ   male 2000  48  6.85
#> 2 JUJ   male 2001  49  6.85
#> 3 JUJ   male 2002  50  6.85
#> 4 JUJ   male 2003  51  6.85
#> 5 SJD female 2010  75  4.60
#> 6 SJD female 2011  76  4.60
#> 7 SJD female 2012  77  4.60
#> 8 SJD female 2013  78  4.60