如何将我的 walkscoreAPI 输出列表转换为 R 中的数据框?
How do I convert my walkscoreAPI output list to a dataframe in R?
我已经使用 walkscore API 生成经纬度列表的输出
数据集的代表:
tibble::tribble(
~Lat, ~Long,
39.75454546, -82.63637088,
40.85117794, -81.47034464,
40.53956136, -74.33630685,
42.16066679, -71.21368025,
39.27048579, -119.5770782,
64.82534285, -147.6738774
)
我的代码:
library(walkscoreAPI)
library(rjson)
data = read.csv(file="geocode_finalcompiled.csv", header=TRUE, sep=",")
attach(data)
#create empty list
res = list()
# for loop through a file
for(i in 1:500){
res[i] = list(getWS(data$Long[i],data$Lat[i],"mykey"))
}
显示结果
资源
> res
[[1]]
$status
[1] 1
$walkscore
[1] 2
$description
[1] "Car-Dependent"
$updated
[1] "2019-03-28 21:43:37.670012"
$snappedLong
[1] -82.6365
$snappedLat
[1] 39.7545
如您所见,输出为 json 格式。我的 objective 是将其制作成一个数据框,其中每个值都显示在每个 header 下,并且可以放入 csv 中。
我试过了:
resformatted <- as.data.frame(res)
但出现以下错误:
错误 as.data.frame.default(x[[i]], optional = TRUE, stringsAsFactors = stringsAsFactors) :
无法将 class ‘"WalkScore"’ 强制转换为 data.frame
如何解决这个问题?
脱离上述方法:
library(dplyr)
library(tibble)
res %>%
sapply(unclass) %>%
as.data.frame() %>%
t() %>%
as.data.frame() %>%
lapply(unlist) %>%
as.data.frame(stringsAsFactors = FALSE) %>%
remove_rownames() -> df
生产:
# status walkscore description updated snappedLong snappedLat
# 1 1 2 Car-Dependent 2019-03-28 21:43:37.670012 -82.6365 39.7545
# 2 1 4 Car-Dependent 2019-04-11 11:23:51.651955 -81.471 40.851
# 3 1 60 Somewhat Walkable 2019-02-25 01:05:08.918498 -74.337 40.539
# 4 1 44 Car-Dependent 2019-04-17 16:26:58.848496 -71.214 42.1605
# 5 1 16 Car-Dependent 2019-05-09 01:34:59.741290 -119.577 39.27
# 6 1 0 Car-Dependent 2019-07-22 19:27:50.170107 -147.6735 64.8255
并写入 csv:
write.csv(df, file = "dfwalk.csv")
我已经使用 walkscore API 生成经纬度列表的输出
数据集的代表:
tibble::tribble(
~Lat, ~Long,
39.75454546, -82.63637088,
40.85117794, -81.47034464,
40.53956136, -74.33630685,
42.16066679, -71.21368025,
39.27048579, -119.5770782,
64.82534285, -147.6738774
)
我的代码:
library(walkscoreAPI)
library(rjson)
data = read.csv(file="geocode_finalcompiled.csv", header=TRUE, sep=",")
attach(data)
#create empty list
res = list()
# for loop through a file
for(i in 1:500){
res[i] = list(getWS(data$Long[i],data$Lat[i],"mykey"))
}
显示结果
资源
> res
[[1]]
$status
[1] 1
$walkscore
[1] 2
$description
[1] "Car-Dependent"
$updated
[1] "2019-03-28 21:43:37.670012"
$snappedLong
[1] -82.6365
$snappedLat
[1] 39.7545
如您所见,输出为 json 格式。我的 objective 是将其制作成一个数据框,其中每个值都显示在每个 header 下,并且可以放入 csv 中。
我试过了:
resformatted <- as.data.frame(res)
但出现以下错误:
错误 as.data.frame.default(x[[i]], optional = TRUE, stringsAsFactors = stringsAsFactors) : 无法将 class ‘"WalkScore"’ 强制转换为 data.frame
如何解决这个问题?
脱离上述方法:
library(dplyr)
library(tibble)
res %>%
sapply(unclass) %>%
as.data.frame() %>%
t() %>%
as.data.frame() %>%
lapply(unlist) %>%
as.data.frame(stringsAsFactors = FALSE) %>%
remove_rownames() -> df
生产:
# status walkscore description updated snappedLong snappedLat
# 1 1 2 Car-Dependent 2019-03-28 21:43:37.670012 -82.6365 39.7545
# 2 1 4 Car-Dependent 2019-04-11 11:23:51.651955 -81.471 40.851
# 3 1 60 Somewhat Walkable 2019-02-25 01:05:08.918498 -74.337 40.539
# 4 1 44 Car-Dependent 2019-04-17 16:26:58.848496 -71.214 42.1605
# 5 1 16 Car-Dependent 2019-05-09 01:34:59.741290 -119.577 39.27
# 6 1 0 Car-Dependent 2019-07-22 19:27:50.170107 -147.6735 64.8255
并写入 csv:
write.csv(df, file = "dfwalk.csv")