这个拓扑排序算法的复杂度是 O(P+D),其中 P 是项目,D 是依赖关系?
Is the complexity of this topological sort algorithm O(P+D) where P is projects and D is dependencies?
我用c++写了一个拓扑排序算法,但我不确定复杂度是否达到应有的水平。我知道有一种拓扑排序算法可以在 O(P+D) 时间内工作,其中 p 是项目,D 是依赖项的数量,但我不确定我是否正确编写了它。你能看看吗?代码如下。也欢迎任何其他改进建议,我觉得有 2 个相邻列表效率低下,我认为应该有更好的方法来做到这一点。
#include <iostream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <queue>
using namespace std;
class Graph
{
public:
Graph(vector<string> projects, vector<pair<string,string>> dependencies)
{
int counter=0;
for(int i=0;i< projects.size();i++)
{
strToInt[projects[i]]=counter++;
}
adjList.resize(projects.size());
for(int i=0;i<dependencies.size();i++)
{
adjList[strToInt[dependencies[i].second]].first.insert(strToInt[dependencies[i].first]);
adjList[strToInt[dependencies[i].first]].second.push_back(strToInt[dependencies[i].second]);
}
}
vector<pair<unordered_set<int>,vector<int>>> adjList;
unordered_map<string,int> strToInt;
bool BuildOrder(){
vector<int> visited(adjList.size(),0);
queue<int> q;
int count =0;
for(int i=0;i<adjList.size();i++)
{
if(adjList[i].first.size()==0)
{
count++;
q.push(i);
}
}
while(!q.empty())
{
count++;
int temp=q.front();
q.pop();
visited[temp]=1;
for(int i=0;i<adjList[temp].second.size();i++)
{
adjList[i].first.erase(temp);
if(adjList[i].first.size()==0&&visited[i]==0)
{
q.push(i);
}
}
}
if(count==visited.size())
{
return true;
}
return false;
}
};
int main()
{
vector<string> projects {"a", "b", "c", "d", "e", "f"};
vector<pair<string,string>> dependencies{
{"a","d"},
{"f","b"},
{"b","d"},
{"f","a"},
{"d","c"}
};
Graph g(projects,dependencies);
bool temp=g.BuildOrder();
return 0;
}
我不完全理解你的代码在做什么,但我认为它正在实现 Kahn 的算法。 Kahn 算法的问题在于它需要一个图形表示,您可以在其中有效地获得有向图中给定顶点的近邻和外邻。对我来说,考虑到一种拓扑类型自然地脱离了仅对外邻的深度优先搜索,这使得它变得太麻烦了。
下面是DFS方式的一个实现。我用两个访问过的集合来做,就像他们在维基百科文章中解释的那样,因为这样你甚至不需要跟踪图的源顶点,在构建图时入度为零的顶点——尽管如果你知道基于DFS的算法的来源更简单。
#include <iostream>
#include <iterator>
#include <functional>
#include <algorithm>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <deque>
using Edges = std::vector<std::pair<std::string, std::string>>;
using Vertices = std::vector<std::string>;
using Graph = std::unordered_map<std::string, std::vector<std::string>>;
Graph BuildAjacencyList(const Edges& edges)
{
Graph graph;
for (const auto& edge : edges)
graph[edge.first].push_back(edge.second);
return graph;
}
Vertices FindTopologicalOrder(const Vertices& vertices, const Edges& edges)
{
auto graph = BuildAjacencyList(edges);
std::unordered_set<std::string> unexplored, visited;
std::copy(vertices.begin(), vertices.end(), std::inserter(unexplored, unexplored.end()));
std::deque<std::string> topo_order;
std::function<bool(std::string)> visit = [&](std::string vert) {
if (unexplored.find(vert) == unexplored.end())
return true;
if (visited.find(vert) != visited.end())
return false;
visited.insert(vert);
for (const auto& neighbor : graph[vert])
if (!visit(neighbor))
return false;
visited.erase(vert);
unexplored.erase(vert);
topo_order.push_front(vert);
return true;
};
while (!unexplored.empty())
if (!visit(*unexplored.begin()))
return Vertices(); // the dependency graph has a cycle.
return Vertices(topo_order.begin(), topo_order.end());
}
int main()
{
std::vector<std::string> projects{ "a", "b", "c", "d", "e", "f" };
Edges dependencies{
{"a","d"},
{"f","b"},
{"b","d"},
{"f","a"},
{"d","c"},
{"b","e"}
};
auto order = FindTopologicalOrder(projects, dependencies);
if (order.empty()) {
std::cout << "there is a cycle in these dependencies\n";
} else {
for (const auto& vert : order)
std::cout << vert << std::endl;
}
return 0;
}
我用c++写了一个拓扑排序算法,但我不确定复杂度是否达到应有的水平。我知道有一种拓扑排序算法可以在 O(P+D) 时间内工作,其中 p 是项目,D 是依赖项的数量,但我不确定我是否正确编写了它。你能看看吗?代码如下。也欢迎任何其他改进建议,我觉得有 2 个相邻列表效率低下,我认为应该有更好的方法来做到这一点。
#include <iostream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <queue>
using namespace std;
class Graph
{
public:
Graph(vector<string> projects, vector<pair<string,string>> dependencies)
{
int counter=0;
for(int i=0;i< projects.size();i++)
{
strToInt[projects[i]]=counter++;
}
adjList.resize(projects.size());
for(int i=0;i<dependencies.size();i++)
{
adjList[strToInt[dependencies[i].second]].first.insert(strToInt[dependencies[i].first]);
adjList[strToInt[dependencies[i].first]].second.push_back(strToInt[dependencies[i].second]);
}
}
vector<pair<unordered_set<int>,vector<int>>> adjList;
unordered_map<string,int> strToInt;
bool BuildOrder(){
vector<int> visited(adjList.size(),0);
queue<int> q;
int count =0;
for(int i=0;i<adjList.size();i++)
{
if(adjList[i].first.size()==0)
{
count++;
q.push(i);
}
}
while(!q.empty())
{
count++;
int temp=q.front();
q.pop();
visited[temp]=1;
for(int i=0;i<adjList[temp].second.size();i++)
{
adjList[i].first.erase(temp);
if(adjList[i].first.size()==0&&visited[i]==0)
{
q.push(i);
}
}
}
if(count==visited.size())
{
return true;
}
return false;
}
};
int main()
{
vector<string> projects {"a", "b", "c", "d", "e", "f"};
vector<pair<string,string>> dependencies{
{"a","d"},
{"f","b"},
{"b","d"},
{"f","a"},
{"d","c"}
};
Graph g(projects,dependencies);
bool temp=g.BuildOrder();
return 0;
}
我不完全理解你的代码在做什么,但我认为它正在实现 Kahn 的算法。 Kahn 算法的问题在于它需要一个图形表示,您可以在其中有效地获得有向图中给定顶点的近邻和外邻。对我来说,考虑到一种拓扑类型自然地脱离了仅对外邻的深度优先搜索,这使得它变得太麻烦了。
下面是DFS方式的一个实现。我用两个访问过的集合来做,就像他们在维基百科文章中解释的那样,因为这样你甚至不需要跟踪图的源顶点,在构建图时入度为零的顶点——尽管如果你知道基于DFS的算法的来源更简单。
#include <iostream>
#include <iterator>
#include <functional>
#include <algorithm>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <deque>
using Edges = std::vector<std::pair<std::string, std::string>>;
using Vertices = std::vector<std::string>;
using Graph = std::unordered_map<std::string, std::vector<std::string>>;
Graph BuildAjacencyList(const Edges& edges)
{
Graph graph;
for (const auto& edge : edges)
graph[edge.first].push_back(edge.second);
return graph;
}
Vertices FindTopologicalOrder(const Vertices& vertices, const Edges& edges)
{
auto graph = BuildAjacencyList(edges);
std::unordered_set<std::string> unexplored, visited;
std::copy(vertices.begin(), vertices.end(), std::inserter(unexplored, unexplored.end()));
std::deque<std::string> topo_order;
std::function<bool(std::string)> visit = [&](std::string vert) {
if (unexplored.find(vert) == unexplored.end())
return true;
if (visited.find(vert) != visited.end())
return false;
visited.insert(vert);
for (const auto& neighbor : graph[vert])
if (!visit(neighbor))
return false;
visited.erase(vert);
unexplored.erase(vert);
topo_order.push_front(vert);
return true;
};
while (!unexplored.empty())
if (!visit(*unexplored.begin()))
return Vertices(); // the dependency graph has a cycle.
return Vertices(topo_order.begin(), topo_order.end());
}
int main()
{
std::vector<std::string> projects{ "a", "b", "c", "d", "e", "f" };
Edges dependencies{
{"a","d"},
{"f","b"},
{"b","d"},
{"f","a"},
{"d","c"},
{"b","e"}
};
auto order = FindTopologicalOrder(projects, dependencies);
if (order.empty()) {
std::cout << "there is a cycle in these dependencies\n";
} else {
for (const auto& vert : order)
std::cout << vert << std::endl;
}
return 0;
}