如何计算每个节点的障碍物高度,并影响A星算法Formula的寻路?

How to calculate the height of an obstacle in every node and take its effect on the path finding of the A star algorithm Formula?

我正在研究 A 星算法以生成最佳轨迹。对于我的问题,我试图找到两点之间无人机的最佳路径,但我需要考虑障碍物的高度。如您所知,算法会通过搜索计算每个节点中的 g (cost)h(heuristic),并通过此公式 F=G+H 选择最佳的一个。我还需要计算障碍物的高度并将其添加到我的公式中成为 F=G+H+E。 E将代表障碍物的高度。

如果无人机在特定高度飞行,遇到很高的障碍物会掉头,如果障碍物的高度接近无人机高度,说明风险很大,会考虑做空飞越它的障碍。

我生成了一张与我的网格大小相同的地图,并为障碍物提供了随机数(随机高度),然后将其应用到我的公式中。在我的扩展阶段,我设定了一个条件,如果障碍物的高度减去无人机的高度,那么无人机就可以飞越它,但我发现没有任何效果。我能得到任何帮助吗?

这是我的代码下方:

#grid format
# 0 = navigable space
# 1 = occupied space

import random

grid = [[0, 1, 0, 0, 0, 0],
        [0, 1, 0, 0, 0, 0],
        [0, 1, 0, 0, 0, 0],
        [0, 1, 0, 0, 0, 0],
        [0, 0, 0, 0, 1, 0]]

heuristic = [[9, 8, 7, 6, 5, 4],
             [8, 7, 6, 5, 4, 3],
             [7, 6, 5, 4, 3, 2],
             [6, 5, 4, 3, 2, 1],
             [5, 4, 3, 2, 1, 0]]

init = [0,0]                            #Start location is (0,0) which we put it in open list.
goal = [len(grid)-1,len(grid[0])-1]     #Our goal in (4,5) and here are the coordinates of the cell.

#Below the four potential actions to the single field

delta = [[-1 , 0],   #up 
         [ 0 ,-1],   #left
         [ 1 , 0],   #down
         [ 0 , 1]]   #right

delta_name = ['^','<','V','>']  #The name of above actions

cost = 1   #Each step costs you one


drone_h = 60  #The altitude of drone

def search():
    #open list elements are of the type [g,x,y] 

    closed = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]

    action = [[-1 for row in range(len(grid[0]))] for col in range(len(grid))]
    #We initialize the starting location as checked
    closed[init[0]][init[1]] = 1

    expand=[[-1 for row in range(len(grid[0]))] for col in range(len(grid))]

    elevation = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
    for i in range(len(grid)):    
        for j in range(len(grid[0])): 
            if grid[i][j] == 1:
                elevation[i][j] = random.randint(1,100)
                print(elevation[i][j])
            else:
                elevation[i][j] = 0


    # we assigned the cordinates and g value
    x = init[0]
    y = init[1]
    g = 0
    h = heuristic[x][y]
    e = elevation[x][y]

    f = g + h + e

    #our open list will contain our initial value
    open = [[f, g, h, x, y]]

    found  = False   #flag that is set when search complete
    resign = False   #Flag set if we can't find expand
    count = 0

    #print('initial open list:')
    #for i in range(len(open)):
            #print('  ', open[i])
    #print('----')


    while found is False and resign is False:

        #Check if we still have elements in the open list
        if len(open) == 0:    
            resign = True
            print('Fail')
            print('############# Search terminated without success')
            print()
        else: 

            open.sort()            
            open.reverse()          
            next = open.pop()       
            #print('list item')
            #print('next')


            x = next[3]
            y = next[4]
            g = next[1]

            expand[x][y] = count
            count+=1

            #Check if we are done
            if x == goal[0] and y == goal[1]:
                found = True
                print(next) 
                print('############## Search is success')
                print()

            else:
                #expand winning element and add to new open list
                for i in range(len(delta)):       
                    x2 = x + delta[i][0]
                    y2 = y + delta[i][1]

                    #if x2 and y2 falls into the grid
                    if x2 >= 0 and x2 < len(grid) and y2 >=0 and y2 <= len(grid[0])-1:
                        #if x2 and y2 not checked yet and there is not obstacles
                        if closed[x2][y2] == 0 and grid[x2][y2] == 0 and elevation[x2][y2]< drone_h:
                            g2 = g + cost            
                            h2 = heuristic[x2][y2]
                            e = elevation[x2][y2]
                            f2 = g2 + h2 + e

                            open.append([f2,g2,h2,x2,y2])   
                            #print('append list item')
                            #print([g2,x2,y2])
                            #Then we check them to never expand again
                            closed[x2][y2] = 1
                            action[x2][y2] = i
    for i in range(len(expand)):
        print(expand[i])
    print()
    policy=[[' ' for row in range(len(grid[0]))] for col in range(len(grid))]
    x=goal[0]
    y=goal[1]
    policy[x][y]='*'
    while x !=init[0] or y !=init[1]:
        x2=x-delta[action[x][y]][0]
        y2=y-delta[action[x][y]][1]
        policy[x2][y2]= delta_name[action[x][y]]
        x=x2
        y=y2
    for i in range(len(policy)):
        print(policy[i])


search()

我得到的结果:

[11, 11, 0, 4, 5]
############## Search is success

[0, -1, -1, -1, -1, -1]
[1, -1, -1, -1, -1, -1]
[2, -1, -1, -1, -1, -1]
[3, -1, 8, 9, 10, 11]
[4, 5, 6, 7, -1, 12]

['V', ' ', ' ', ' ', ' ', ' ']
['V', ' ', ' ', ' ', ' ', ' ']
['V', ' ', ' ', ' ', ' ', ' ']
['V', ' ', ' ', '>', '>', 'V']
['>', '>', '>', '^', ' ', '*']

您需要将成本与障碍物的高度相关联。所以,你需要弄清楚,就距离而言,高障碍物所代表的风险有多大。

所以,基本上你的启发式保持你的实际距离是 G(到现在)+E(到现在),你的启发式保持 G(到现在)+E(到现在)+H

既然你没有说明承担风险有多糟糕以及你有多想避免它,比方说,除非没有其他办法,否则你永远不想承担风险。

然后您可以按如下方式关联海拔高度的成本:

E(x) = 0 if obstacle is low
E(x) = maximal_possible_distance + (elevation - drone height)

那样的话,绕路总是更好,而且它有利于较小的海拔(如果你更喜欢较小的海拔,请添加一个因子或指数)