如何有条件地聚合 pandas 查询的投影部分中的值?
How do I conditionally aggregate values in projection part of pandas query?
我目前有一个包含以下内容的 csv 文件:
ID PRODUCT_ID NAME STOCK SELL_COUNT DELIVERED_BY
1 P1 PRODUCT_P1 12 15 UPS
2 P2 PRODUCT_P2 4 3 DHL
3 P3 PRODUCT_P3 120 22 DHL
4 P1 PRODUCT_P1 423 18 UPS
5 P2 PRODUCT_P2 0 5 GLS
6 P3 PRODUCT_P3 53 10 DHL
7 P4 PRODUCT_P4 22 0 UPS
8 P1 PRODUCT_P1 94 56 GLS
9 P1 PRODUCT_P1 9 24 GLS
当我执行此 SQL 查询时:
SELECT
PRODUCT_ID,
MIN(CASE WHEN DELIVERED_BY = 'UPS' THEN STOCK END) as STOCK,
SUM(CASE WHEN ID > 6 THEN SELL_COUNT END) as TOTAL_SELL_COUNT,
SUM(CASE WHEN SELL_COUNT * 100 > 1000 THEN SELL_COUNT END) as COND_SELL_COUNT
FROM products
GROUP BY PRODUCT_ID;
我得到了想要的结果:
PRODUCT_ID STOCK TOTAL_SELL_COUNT COND_SELL_COUNT
P1 12 80 113
P2 null null null
P3 null null 22
P4 22 0 null
现在我正在尝试使用 pandas 在该数据集上以某种方式获得相同的结果,这就是我正在努力解决的问题。
我将 csv 文件导入到名为 df_products 的 DataFrame 中。
然后我试了这个:
def custom_aggregate(grouped):
data = {
'STOCK': np.where(grouped['DELIVERED_BY'] == 'UPS', grouped['STOCK'].min(), np.nan) # [grouped['STOCK'].min() if grouped['DELIVERED_BY'] == 'UPS' else None]
}
d_series = pd.Series(data)
return d_series
result = df_products.groupby('PRODUCT_ID').apply(custom_aggregate)
print(result)
如您所见,我离预期结果还差得很远,因为我在根据 DELIVERED_BY 值使条件 STOCK 聚合工作时遇到问题。
这输出:
STOCK
PRODUCT_ID
P1 [9.0, 9.0, nan, nan]
P2 [nan, nan]
P3 [nan, nan]
P4 [22.0]
这甚至不是正确的格式,但如果我能获得预期的 12.0 而不是 P1 的 9.0,我会很高兴。
谢谢
我只是想补充一点,我通过创建额外的列来接近结果:
df_products['COND_STOCK'] = df_products[df_products['DELIVERED_BY'] == 'UPS']['STOCK']
df_products['SELL_COUNT_ID_GT6'] = df_products[df_products['ID'] > 6]['SELL_COUNT']
df_products['SELL_COUNT_GT1000'] = df_products[(df_products['SELL_COUNT'] * 100) > 1000]['SELL_COUNT']
函数将如下所示:
def custom_aggregate(grouped):
data = {
'STOCK': grouped['COND_STOCK'].min(),
'TOTAL_SELL_COUNT': grouped['SELL_COUNT_ID_GT6'].sum(),
'COND_SELL_COUNT': grouped['SELL_COUNT_GT1000'].sum(),
}
d_series = pd.Series(data)
return d_series
result = df_products.groupby('PRODUCT_ID').apply(custom_aggregate)
这是 'almost' 想要的结果:
STOCK TOTAL_SELL_COUNT COND_SELL_COUNT
PRODUCT_ID
P1 12.0 80.0 113.0
P2 NaN 0.0 0.0
P3 NaN 0.0 22.0
P4 22.0 0.0 0.0
通常我们可以将pandas写成如下
df.groupby('PRODUCT_ID').apply(lambda x : pd.Series({'STOCK':x.loc[x.DELIVERED_BY =='UPS','STOCK'].min(),
'TOTAL_SELL_COUNT': x.loc[x.ID>6,'SELL_COUNT'].sum(min_count=1),
'COND_SELL_COUNT':x.loc[x.SELL_COUNT>10,'SELL_COUNT'].sum(min_count=1)}))
输出[105]:
STOCK TOTAL_SELL_COUNT COND_SELL_COUNT
PRODUCT_ID
P1 12.0 80.0 113.0
P2 NaN NaN NaN
P3 NaN NaN 22.0
P4 22.0 0.0 NaN
我目前有一个包含以下内容的 csv 文件:
ID PRODUCT_ID NAME STOCK SELL_COUNT DELIVERED_BY
1 P1 PRODUCT_P1 12 15 UPS
2 P2 PRODUCT_P2 4 3 DHL
3 P3 PRODUCT_P3 120 22 DHL
4 P1 PRODUCT_P1 423 18 UPS
5 P2 PRODUCT_P2 0 5 GLS
6 P3 PRODUCT_P3 53 10 DHL
7 P4 PRODUCT_P4 22 0 UPS
8 P1 PRODUCT_P1 94 56 GLS
9 P1 PRODUCT_P1 9 24 GLS
当我执行此 SQL 查询时:
SELECT
PRODUCT_ID,
MIN(CASE WHEN DELIVERED_BY = 'UPS' THEN STOCK END) as STOCK,
SUM(CASE WHEN ID > 6 THEN SELL_COUNT END) as TOTAL_SELL_COUNT,
SUM(CASE WHEN SELL_COUNT * 100 > 1000 THEN SELL_COUNT END) as COND_SELL_COUNT
FROM products
GROUP BY PRODUCT_ID;
我得到了想要的结果:
PRODUCT_ID STOCK TOTAL_SELL_COUNT COND_SELL_COUNT
P1 12 80 113
P2 null null null
P3 null null 22
P4 22 0 null
现在我正在尝试使用 pandas 在该数据集上以某种方式获得相同的结果,这就是我正在努力解决的问题。
我将 csv 文件导入到名为 df_products 的 DataFrame 中。 然后我试了这个:
def custom_aggregate(grouped):
data = {
'STOCK': np.where(grouped['DELIVERED_BY'] == 'UPS', grouped['STOCK'].min(), np.nan) # [grouped['STOCK'].min() if grouped['DELIVERED_BY'] == 'UPS' else None]
}
d_series = pd.Series(data)
return d_series
result = df_products.groupby('PRODUCT_ID').apply(custom_aggregate)
print(result)
如您所见,我离预期结果还差得很远,因为我在根据 DELIVERED_BY 值使条件 STOCK 聚合工作时遇到问题。
这输出:
STOCK
PRODUCT_ID
P1 [9.0, 9.0, nan, nan]
P2 [nan, nan]
P3 [nan, nan]
P4 [22.0]
这甚至不是正确的格式,但如果我能获得预期的 12.0 而不是 P1 的 9.0,我会很高兴。
谢谢
我只是想补充一点,我通过创建额外的列来接近结果:
df_products['COND_STOCK'] = df_products[df_products['DELIVERED_BY'] == 'UPS']['STOCK']
df_products['SELL_COUNT_ID_GT6'] = df_products[df_products['ID'] > 6]['SELL_COUNT']
df_products['SELL_COUNT_GT1000'] = df_products[(df_products['SELL_COUNT'] * 100) > 1000]['SELL_COUNT']
函数将如下所示:
def custom_aggregate(grouped):
data = {
'STOCK': grouped['COND_STOCK'].min(),
'TOTAL_SELL_COUNT': grouped['SELL_COUNT_ID_GT6'].sum(),
'COND_SELL_COUNT': grouped['SELL_COUNT_GT1000'].sum(),
}
d_series = pd.Series(data)
return d_series
result = df_products.groupby('PRODUCT_ID').apply(custom_aggregate)
这是 'almost' 想要的结果:
STOCK TOTAL_SELL_COUNT COND_SELL_COUNT
PRODUCT_ID
P1 12.0 80.0 113.0
P2 NaN 0.0 0.0
P3 NaN 0.0 22.0
P4 22.0 0.0 0.0
通常我们可以将pandas写成如下
df.groupby('PRODUCT_ID').apply(lambda x : pd.Series({'STOCK':x.loc[x.DELIVERED_BY =='UPS','STOCK'].min(),
'TOTAL_SELL_COUNT': x.loc[x.ID>6,'SELL_COUNT'].sum(min_count=1),
'COND_SELL_COUNT':x.loc[x.SELL_COUNT>10,'SELL_COUNT'].sum(min_count=1)}))
输出[105]:
STOCK TOTAL_SELL_COUNT COND_SELL_COUNT
PRODUCT_ID
P1 12.0 80.0 113.0
P2 NaN NaN NaN
P3 NaN NaN 22.0
P4 22.0 0.0 NaN