如何将浮点算法转换为定点算法?

How to convert floating point algorithm to fixed point?

在阅读了很多关于定点运算的内容后,我想我可以说我已经理解了基础知识,不幸的是我还不知道如何转换使用 sin/cos/sqrt 或任何其他 fp 函数的例程.

考虑这个简单的 mcve:

#include <math.h>
#include <stdio.h>
#include <ctime>
#include <fstream>
#include <iostream>

typedef char S8;
typedef short S16;
typedef int S32;
typedef unsigned char U8;
typedef unsigned short U16;
typedef unsigned int U32;
typedef float F32;
typedef double F64;

// -------- Fixed point helpers QM.N(32bits) --------
typedef S32 FP32;

#define LUT_SIZE_BITS 9  // 0xffffffff>>(32-9)=511; 32-23=9; 2^9=512
#define LUT_SIZE 512

#define FRACT_BITS 28        // Number fractional bits
#define M (1 << FRACT_BITS)  // Scaling factor

inline F32 Q2F(FP32 X) { return ((F32)X / (F32)(M)); }
inline FP32 F2Q(F32 X) { return (FP32)(X * (M)); }

const F32 PI = 3.141592653589793f;
const F32 pi = 3.141592653589793f;
const U32 WIDTH = 256;
const U32 HEIGHT = 256;

FP32 cos_table[LUT_SIZE];
FP32 sin_table[LUT_SIZE];

void init_luts() {
    const F32 deg_to_rad = PI / 180.f;
    const F32 sample_to_deg = 1 / LUT_SIZE * 360.f;
    for (S32 i = 0; i < LUT_SIZE; i++) {
        F32 rad = ((F32)i * sample_to_deg) * deg_to_rad;
        F32 c = cos(rad);
        F32 s = sin(rad);
        cos_table[i] = F2Q(c);
        sin_table[i] = F2Q(s);
    }
}

// -------- Image processing --------
U8 clamp(F32 valor) { return valor > 255 ? 255 : (valor < 0 ? 0 : (U8)valor); }

struct Pbits {
    U32 width;
    U32 height;
    U8 *data;

    Pbits(U32 width, U32 height, U8 *data) {
        this->width = width;
        this->height = height;
        this->data = data;
    }

    Pbits(Pbits *src) {
        this->width = src->width;
        this->height = src->height;
        this->data = new U8[src->width * src->height * 3];
        memcpy(this->data, src->data, width * height * 3);
    }

    ~Pbits() { delete this->data; }

    void to_bgr() {
        U8 r, g, b;
        for (S32 y = 0; y < height; y++) {
            for (S32 x = 0; x < width; x++) {
                get_pixel(y, x, r, g, b);
                set_pixel(y, x, b, g, r);
            }
        }
    }

    void get_pixel(U32 y, U32 x, U8 &r, U8 &g, U8 &b) {
        U32 offset = (y * height * 3) + (x * 3);
        r = this->data[offset + 0];
        g = this->data[offset + 1];
        b = this->data[offset + 2];
    }

    void set_pixel(U32 y, U32 x, U8 c1, U8 c2, U8 c3) {
        U32 offset = (y * height * 3) + (x * 3);

        data[offset] = c1;
        data[offset + 1] = c2;
        data[offset + 2] = c3;
    }
};

void fx1_plasma(Pbits *dst, F32 t, F32 k1, F32 k2, F32 k3, F32 k4, F32 k5, F32 k6) {
    U32 height = dst->height;
    U32 width = dst->width;

    for (U32 y = 0; y < height; y++) {
        F32 uv_y = (F32)y / height;
        for (U32 x = 0; x < width; x++) {
            F32 uv_x = (F32)x / width;

            F32 v1 = sin(uv_x * k1 + t);
            F32 v2 = sin(k1 * (uv_x * sin(t) + uv_y * cos(t / k2)) + t);
            F32 cx = uv_x + sin(t / k1) * k1;
            F32 cy = uv_y + sin(t / k2) * k1;
            F32 v3 = sin(sqrt(k3 * (cx * cx + cy * cy)) + t);
            F32 vf = v1 + v2 + v3;

            U8 r = (U8)clamp(255 * cos(vf * pi));
            U8 g = (U8)clamp(255 * sin(vf * pi + k4 * pi / k2));
            U8 b = (U8)clamp(255 * cos(vf * pi + k5 * pi / k2));

            dst->set_pixel(y, x, r, g, b);
        }
    }
}

// -------- Image helpers --------
inline void _write_s32(U8 *dst, S32 offset, S32 v) {
    dst[offset] = (U8)(v);
    dst[offset + 1] = (U8)(v >> 8);
    dst[offset + 2] = (U8)(v >> 16);
    dst[offset + 3] = (U8)(v >> 24);
}

void write_bmp(Pbits *src, S8 *filename) {
    Pbits *dst = new Pbits(src);
    dst->to_bgr();

    S32 w = dst->width;
    S32 h = dst->height;
    U8 *img = dst->data;

    S32 filesize = 54 + 3 * w * h;

    U8 bmpfileheader[14] = {'B', 'M', 0, 0, 0, 0, 0, 0, 0, 0, 54, 0, 0, 0};
    U8 bmpinfoheader[40] = {40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 24, 0};
    U8 bmppad[3] = {0, 0, 0};

    _write_s32(bmpfileheader, 2, filesize);
    _write_s32(bmpinfoheader, 4, w);
    _write_s32(bmpinfoheader, 8, h);

    FILE *f = fopen(filename, "wb");
    fwrite(bmpfileheader, 1, 14, f);
    fwrite(bmpinfoheader, 1, 40, f);
    for (S32 i = 0; i < h; i++) {
        fwrite(img + (w * (h - i - 1) * 3), 3, w, f);
        fwrite(bmppad, 1, (4 - (w * 3) % 4) % 4, f);
    }

    delete dst;
}

void write_ppm(Pbits *dst, S8 *filename) {
    std::ofstream file(filename, std::ofstream::trunc);
    if (!file.is_open()) {
        std::cout << "yep! file is not open" << std::endl;
    }
    file << "P3\n" << dst->width << " " << dst->height << "\n255\n";

    U8 r, g, b, a;
    for (U32 y = 0; y < dst->height; y++) {
        for (U32 x = 0; x < dst->width; x++) {
            dst->get_pixel(y, x, r, g, b);
            file << (S32)r << " " << (S32)g << " " << (S32)b << "\n";
        }
    }
}

S32 main() {
    Pbits *dst = new Pbits(WIDTH, HEIGHT, new U8[WIDTH * HEIGHT * 3]);

    init_luts();

    clock_t begin = clock();
    fx1_plasma(dst, 0, 8, 36, 54, 51, 48, 4);
    clock_t end = clock();
    double elapsed_secs = double(end - begin) / CLOCKS_PER_SEC;

    std::cout << "Generated plasma in " << elapsed_secs << "s" << std::endl;

    write_ppm(dst, "plasma.ppm");
    write_bmp(dst, "plasma.bmp");

    delete dst;
}

此代码将生成此图像:

问题:如何将这个浮点算法转换为快速定点算法?现在浮点运算的基础知识对我来说是 +/- 清楚的,如:

fa,fb=floating point values; a,b=fixed_point ones; M=scaling factor

fa = a*M
fb = b*M
fa+fb = (a+b)*M
fa-fb = (a-b)*M
fa*fb = (a*b)*M^2
fa/fb = (a/b)

但是如何在定点中使用 sin/cos/sqrt 等人仍然是我的问题。我发现这个相关 但我仍然不明白如何使用具有随机 fp 值的三角 luts。

查找的基本思路 table 很简单——您使用定点值作为数组的索引来查找值。问题是如果你的定点值很大,你的 tables 会变得很大。对于具有 32 位 FP 类型的完整 table,您需要 4*232 字节 (16GB),这是不切实际的大。所以你通常做的是使用较小的 table (小 N 倍)和线性插值在 table 中的两个值之间进行查找。

在您的情况下,您似乎想要使用 223 缩减,因此您需要仅包含 513 个元素的 table。要进行查找,然后使用高 9 位作为 table 的索引并使用低 23 位进行插值。例如:

FP32 cos_table[513] = { 268435456, ...
FP32 cosFP32(FP32 x) {
    int i = x >> 23;  // upper 9 bits to index the table
    int fract = x & 0x7fffff;  // lower 23 bits to interpolate
    return ((int64_t)cos_table[i] * ((1 << 23) - fract) + (int64_t)cos_table[i+1] * fract + (1 << 22)) >> 23;
}

请注意,我们必须在 64 位中进行乘法以避免溢出,这与 FP32 值的任何其他乘法相同。

由于 cos 是对称的,您可以使用该对称性将 table 的大小再减少 4 倍,并将相同的 table 用于 sin,但这需要更多的工作。


如果你使用的是 C++,你可以定义一个 class 重载来封装你的定点类型:

class fixed4_28 {
    int32_t  val;
    static const int64_t fract_val = 1 << 28;
 public:
    fixed4_28 operator+(fixed4_28 a) const { a.val = val + a.val; return a; }
    fixed4_28 operator-(fixed4_28 a) const { a.val = val - a.val; return a; }
    fixed4_28 operator*(fixed4_28 a) const { a.val = ((int64_t)val * a.val) >> 28; return a; }
    fixed4_28 operator/(fixed4_28 a) const { a.val = ((int64_t)val << 28) / a.val; return a; }

    fixed4_28(double v) : val(v * fract_val + 0.5) {}
    operator double() { return (double)val / fract_val; }

    friend fixed4_28 cos(fixed_4_28);
};

inline fixed4_28 cos(fixed4_28 x) {
    int i = x.val >> 23;  // upper 9 bits to index the table
    int fract = x.val & 0x7fffff;  // lower 23 bits to interpolate
    x.val = ((int64_t)cos_table[i] * ((1 << 23) - fract) + (int64_t)cos_table[i+1] * fract + (1 << 22)) >> 23;
    return x;
}

然后您的代码可以直接使用此类型,您可以像使用 floatdouble

一样编写方程式
#ifdef _MSC_VER
#pragma comment(lib,"opengl32.lib")
#pragma comment(lib,"glu32.lib")
#pragma warning(disable : 4996)
#pragma warning(disable : 26495)  //varsayılan değer atamıyorum
#pragma warning(disable :6031)//dönüş değeri yok sayıldı
#endif

#include <Windows.h>
#include <gl/gl.h>      //-lopengl32 
//#include <gl/glu.h>   //-lglu32

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>

typedef unsigned char   U8;
typedef unsigned int    U32;

#define LUT_SIZE 1024           //1Kb  10 bit sin cos
#define LUT_SIZE2 0x000fffff    //1Mb  20 bit sqrt

float cos_tab[LUT_SIZE];
float sin_tab[LUT_SIZE];
U8    clamp_cos_tab[LUT_SIZE];
U8    clamp_sin_tab[LUT_SIZE];
float sqrt_tab[LUT_SIZE2];


const float pi = 3.141592;
const float pi_k = LUT_SIZE / (2 * pi);

const U32 WIDTH = 640;  //256
const U32 HEIGHT = 480; //256



struct Pbits;
Pbits* pdst;


U8 clamp(float f) { return f > 255 ? 255 : (f < 0 ? 0 : (U8)f); }

#define sin2(f)      sin_tab        [ (int)(pi_k * (f)) & 0x000003ff]//LUT_SIZE-1
#define cos2(f)      cos_tab        [ (int)(pi_k * (f)) & 0x000003ff]
#define clamp_sin(f) clamp_sin_tab  [ (int)(pi_k * (f)) & 0x000003ff]
#define clamp_cos(f) clamp_cos_tab  [ (int)(pi_k * (f)) & 0x000003ff]
#define sqrt2(f)     sqrt_tab       [*(int*)&(f)>>12]   //32-20 bit

void init_luts()
{
    for (int i = 0; i < LUT_SIZE; i++)
    {
        cos_tab[i] = cos(i / pi_k);
        sin_tab[i] = sin(i / pi_k);

        clamp_cos_tab[i] = clamp(255 * cos(i / pi_k));
        clamp_sin_tab[i] = clamp(255 * sin(i / pi_k));
    }

    for (int i = 0; i < LUT_SIZE2; i++)//init_luts
    {
        int ii=i<<12;       //32-20 bit
        float f = *(float *)&ii;    //i to float
        sqrt_tab[i] = sqrt(f);
    }

}



float sqrt3(float x)
{
    //https ://www.codeproject.com/Articles/69941/Best-Square-Root-Method-Algorithm-Function-Precisi
    unsigned int i = *(unsigned int*)& x;

    i += (127 << 23);
    i >>= 1;
    return *(float*)&i;
}
float sqrt4(float x)
{
    //https: //whosebug.com/questions/1349542/john-carmacks-unusual-fast-inverse-square-root-quake-iii
    float xhalf = 0.5f * x;
    int i = *(int*)&x;              // get bits for floating value
    i = 0x5f375a86 - (i >> 1);      // gives initial guess y0
    x = *(float*)&i;                // convert bits back to float
    x = x * (1.5f - xhalf * x * x); // Newton step, repeating increases accuracy
    return x;
}



struct Pbits
{
    int width;
    int height;
    U8* data;

    Pbits(int _width, int _height, U8* _data = 0)
    {
        width = _width;
        height = _height;
        if (!_data)
            _data = (U8*)calloc(width * height * 3, 1);
        data = _data;
    }

    ~Pbits() { free(data); }
    void set_pixel(int y, int x, U8 c1, U8 c2, U8 c3)
    {
        int offset = (y * width * 3) + (x * 3);

        data[offset] = c1;
        data[offset + 1] = c2;
        data[offset + 2] = c3;
    }
    void save(const char* filename)
    {

        U8 pp[54] = { 'B', 'M', 0, 0, 0, 0, 0, 0, 0, 0, 54, 0, 0, 0 ,
                         40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 24, 0 };
        *(int*)(pp + 2) = 54 + 3 * width * height;
        *(int*)(pp + 18) = width;
        *(int*)(pp + 22) = height;

        int size = height * width * 3;
        U8* p = data;
        for (int i = 0; i < size; i += 3)//to_bgr()
        {
            U8 tmp = p[i];
            p[i] = p[i + 2];
            p[i + 2] = tmp;
        }

        FILE* f = fopen(filename, "wb");
        fwrite(pp, 1, 54, f);
        fwrite(data, size, 1, f);
        fclose(f);

        for (int i = 0; i < size; i += 3)//to_rgb()
        {
            U8 tmp = p[i];
            p[i] = p[i + 2];
            p[i + 2] = tmp;
        }

    }

};

void fn_plasma_slow(Pbits& dst, float t,
    float k1, float k2, float k3, float k4, float k5, float k6)
{
    int height = dst.height;
    int width = dst.width;

    for (int y = 0; y < height; y++)
    {
        float uv_y = (float)y / height;
        for (int x = 0; x < width; x++)
        {
            float uv_x = (float)x / width;

            float v1 = sin(uv_x * k1 + t);
            float v2 = sin(k1 * (uv_x * sin(t) + uv_y * cos(t / k2)) + t);
            float cx = uv_x + sin(t / k1) * k1;
            float cy = uv_y + sin(t / k2) * k1;
            float v3 = sin(sqrt(k3 * (cx * cx + cy * cy)) + t);
            float vf = v1 + v2 + v3;

            U8 r = (U8)clamp(255 * cos(vf * pi));
            U8 g = (U8)clamp(255 * sin(vf * pi + k4 * pi / k2));
            U8 b = (U8)clamp(255 * cos(vf * pi + k5 * pi / k2));

            dst.set_pixel(y, x, r, g, b);
        }
    }
}


void fn_plasma_fast(Pbits& dst, float t,
    float k1, float k2, float k3,
    float k4, float k5, float k6)
{

    U8* p = dst.data;

    float
        height = dst.height,
        width = dst.width,

        _k42 = pi * k4 / k2,
        _k52 = pi * k5 / k2,
        _cx = sin2(t / k1) * k1,
        _cy = sin2(t / k2) * k1,
        _x = sin2(t),
        _y = cos2(t / k2);

    for (float j = 0; j < height; j++)
        for (float i = 0; i < width; i++)
        {
            float
                x = i / width,
                y = j / height,

                v1 = sin2(k1 * x + t),
                v2 = sin2(k1 * (x * _x + y * _y) + t),

                cx = x + _cx,
                cy = y + _cy,
                aa1 = k3 * (cx * cx + cy * cy),

                v3 = sin2(sqrt2(aa1) + t),
                vf = pi * (v1 + v2 + v3);

            *p++ = clamp_cos(vf);           //red
            *p++ = clamp_sin(vf + _k42);    //green
            *p++ = clamp_cos(vf + _k52);    //blue

        }
}



void fn_plasma_fast2(Pbits& dst, float t,
    float k1, float k2, float k3,
    float k4, float k5, float k6)
{

    U8* p = dst.data;

    static float data_v1[1024];
    static float data_cx[1024];
    static float data_cy[1024];
    static float data_xx3[1024];
    static float data_yy3[1024];

    float
        height = dst.height,
        width = dst.width,

        _k42 = pi * k4 / k2,
        _k52 = pi * k5 / k2,
        _cx = sin2(t / k1) * k1,
        _cy = sin2(t / k2) * k1,
        _x = sin2(t)/width*k1 ,
        _y = cos2(t/k2)/height*k1;


    for (int x = 0; x < width; x++)
    {
        data_v1[x] = sin2(k1 * x /width+ t);

        float f = x / width + _cx;
        data_cx[x] =k3* f*f;
        data_xx3[x] = x * _x;
    }
    for (int y = 0; y < height; y++)
    {
        float f = y / height + _cy;
        data_cy[y] = k3*f * f;
        data_yy3[y] = y*_y ;
    };


    for (int y = 0; y < height; y++)
    for (int x = 0; x < width; x++)
    {

        //float v1 = data_v1[x];
        //float v2 = sin2(data_xx3[x] + data_yy3[y]);

        float aa1 = data_cx[x] + data_cy[y];

        //float     v3 = sin2(sqrt2(aa1) + t);
        //float     vf = pi * (v1 + v2 + v3);
        float vf = pi * (data_v1[x]+ sin2(data_xx3[x] + data_yy3[y])+ sin2(sqrt2(aa1) + t));

        *p++ = clamp_cos(vf);           //red
        *p++ = clamp_sin(vf + _k42);    //green
        *p++ = clamp_cos(vf + _k52);    //blue

    }
}




struct window
{
    int  x, y, width, height;       //iç x y +en boy

    HINSTANCE   hist;       //  program kaydı
    HWND        hwnd;       //  window
    HDC         hdc;        //  device context 
    HGLRC       hrc;        //  opengl context 
    //WNDPROC       fn_pencere; //  pencere fonksiyonu
    WNDCLASS    wc;         //  pencere sınıfı
    PIXELFORMATDESCRIPTOR pfd;

    window(int _width = 256, int _height = 256)
    {
        memset(this, 0, sizeof(*this));
        x = 100;
        y = 100;
        width = _width;
        height = _height;

        //HINSTANCE
        hist = GetModuleHandle(NULL);

        //WNDCLASS
        wc.lpfnWndProc = (WNDPROC)fn_window;
        wc.hInstance = hist;
        wc.hIcon = LoadIcon(0, IDI_WINLOGO);
        wc.hCursor = LoadCursor(0, IDC_ARROW);
        wc.lpszClassName = "opengl";
        RegisterClass(&wc);

        //HWND
        hwnd = CreateWindow("opengl", "test",
            WS_OVERLAPPEDWINDOW,
            x, y, width + 16, height + 39,
            NULL, NULL, hist, NULL);
        //HDC
        hdc = GetDC(hwnd);


        //PFD
        pfd.nSize = sizeof(pfd);
        pfd.nVersion = 1;
        pfd.dwFlags = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL | PFD_DOUBLEBUFFER;
        pfd.iPixelType = PFD_TYPE_RGBA;
        pfd.cColorBits = 32;

        int  pf = ChoosePixelFormat(hdc, &pfd);
        SetPixelFormat(hdc, pf, &pfd);
        DescribePixelFormat(hdc, pf, sizeof(PIXELFORMATDESCRIPTOR), &pfd);

        //HRC
        hrc = wglCreateContext(hdc);
        wglMakeCurrent(hdc, hrc);

        ShowWindow(hwnd, SW_SHOW);
        SetFocus(hwnd);


    }
    ~window()
    {
        if (hrc)
            wglMakeCurrent(NULL, NULL),
            wglDeleteContext(hrc);
        if (hdc)    ReleaseDC(hwnd, hdc);
        if (hwnd)   DestroyWindow(hwnd);
        if (hist)   UnregisterClass("opengl", hist);
    }

    void run()
    {
        MSG         msg;
        BOOL dongu = true;

        while (dongu)
        {
            if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
            {
                if (msg.message == WM_QUIT) dongu = 0;
                else
                {
                    TranslateMessage(&msg);
                    DispatchMessage(&msg);
                }
            }
            else
            {
                render();
                SwapBuffers(hdc);
            }
        }
    }

    static int __stdcall fn_window(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)
    {
        switch (msg)
        {
            //case WM_CREATE:   {}  break;
            //case WM_COMMAND:  {}  break;
            //case WM_PAINT:    {}  break;
        case WM_CLOSE: {    DestroyWindow(hwnd); }break;
        case WM_DESTROY: {PostQuitMessage(0); }break;
        }
        return DefWindowProc(hwnd, msg, wParam, lParam);
    }
    static void render()
    {
        //OPENGL 1.0
        //glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);   
        //glMatrixMode(GL_PROJECTION);  glLoadIdentity();
        //glMatrixMode(GL_MODELVIEW);   glLoadIdentity();

        static float t; t += 0.02;
        fn_plasma_fast2(*pdst, t, 8, 36, 54, 51, 48, 4);//FAST

        glRasterPos3f(-1, -1, 0);
        glDrawPixels(WIDTH, HEIGHT, GL_RGB, GL_UNSIGNED_BYTE, pdst->data);

    }
};



int main()
{


    Pbits dst(WIDTH, HEIGHT);
    pdst = &dst;
    init_luts();


    int begin;

    begin = clock();
    fn_plasma_slow(dst, 0, 8, 36, 54, 51, 48, 4);
    printf("fn_plasma_slow:  %4d\n", clock() - begin );
    dst.save("plasma_slow.bmp");

    begin = clock();
    fn_plasma_fast(dst, 0, 8, 36, 54, 51, 48, 4);
    printf("fn_plasma_fast: %4d\n", clock() - begin);
    dst.save("plasma_fast.bmp");


    begin = clock();
    fn_plasma_fast2(dst, 0, 8, 36, 54, 51, 48, 4);
    printf("fn_plasma_fast2: %4d\n", clock() - begin );
    dst.save("plasma_fast2.bmp");



    window win(WIDTH, HEIGHT);
    win.run();


    return 0;
}

对于sin()cos(),第一步是缩小范围,看起来像“angle = angle % degrees_in_a_circle”。可悲的是,这些函数通常使用弧度,而弧度很讨厌,因为范围缩小变成了“angle = angle % (2 * PI)”,这意味着精度取决于无理数的模数(保证为 "not fun")。

考虑到这一点;你想把弧度扔进垃圾桶并发明一个新的 "binary degrees" 这样一个圆被分成 "powers of 2" 块。这意味着范围缩小变为 "angle = angle & MASK;" 而没有精度损失(并且没有昂贵的模数)。 sin()cos() 的其余部分(如果您使用的是 table 驱动方法)已由现有答案充分描述,因此我不会在此答案中重复。

下一步是意识到 "globally fixed point" 很糟糕。我称之为 "moving point" 的要好得多。要理解这一点,请考虑乘法。对于 "globally fixed point",您可能会执行“result_16_16 = (x_16_16 * y_16_16) >> 16”并丢弃 16 位精度并且不得不担心溢出。对于 "moving point" 你可能会做“result_32_32 = x_16_16 * y_16_16”(小数点移动的地方)并且知道没有精度损失,知道不会溢出,并通过避免移位使其更快.

对于 "moving point",您将从输入的实际要求开始(例如,对于从 0.0 到 100.0 的数字,您可以从 uint16_t 的 5 位“7.4 定点”开始未使用)并明确管理精度和范围吞吐量计算得出的结果保证不受溢出影响,并且在每一步都在 "number of bits" 和精度之间取得最佳折衷。

例如:

 uint16_t inputValue_7_4 = 50 << 4;                   // inputValue is actually 50.0
 uint16_t multiplier_1_1 = 3;                         // multiplier is actually 1.5
 uint16_t k_0_5 = 28;                                 // k is actually 0.875
 uint16_t divisor_2_5 = 123;                          // divisor is actually 3.84375

 uint16_t x_8_5 = inputValue_7_4 * multiplier_1_1;    // Guaranteed no overflow and no precision loss
 uint16_t y_9_5 = x_8_5 + k+0_5;                      // Guaranteed no overflow and no precision loss
 uint32_t result_9_23 = (y_9_5 << 23) / divisor_2_5;  // Guaranteed no overflow, max. possible precision kept

I'd like to do it as "mechanically" as possible

没有理由 "moving point" 不能纯粹机械地完成,如果您指定输入的特征并提供一些其他注释(所需的除法精度,加上任何故意的精度损失或结果的总位数);鉴于确定任何操作结果大小的规则以及该点在该结果中的位置很容易确定。然而;我不知道现有的工具可以进行这种机械转换,因此您必须为 "annotated expressions" 发明自己的语言并编写自己的工具将其转换为另一种语言(例如 C)。仅手动进行转换可能会花费更少的开发人员时间。

/*
very very fast
float sqrt2(float);

(-1) ^ s* (1 + n * 2 ^ -23)* (2 ^ (x - 127)) float
sxxxxxxxxnnnnnnnnnnnnnnnnnnnnnnn  float f
000000000000sxxxxxxxxnnnnnnnnnnn  int indis  20 bit
*/

#define LUT_SIZE2 0x000fffff   //1Mb  20 bit
float sqrt_tab[LUT_SIZE2];
#define sqrt2(f)     sqrt_tab[*(int*)&f>>12]  //float to int


int main()
{
    //init_luts();
    for (int i = 0; i < LUT_SIZE2; i++)
    {
        int ii = i << 12;        //i to float 
        sqrt_tab[i] = sqrt(*(float*)& ii);
    }

    float f=1234.5678;
    printf("test\n");
    printf(" sqrt(1234.5678)=%12.6f\n", sqrt(f));
    printf("sqrt2(1234.5678)=%12.6f\n", sqrt2(f));


    printf("\n\ntest mili second\n");
    int begin;
    int free;

    begin = clock();
    for (float f = 0; f < 10000000.f; f++)
        ;
    free = clock() - begin;
    printf("free        %4d\n", free);

    begin = clock();
    for (float f = 0; f < 10000000.f; f++)
        sqrt(f);
    printf("sqrt()      %4d\n", clock() - begin - free);


    begin = clock();
    for (float f = 0; f < 10000000.f; f++)
        sqrt2(f);
    printf("sqrt2()     %4d\n", clock() - begin - free);


    return 0;

}

/*
 sgrt(1234.5678)   35.136416
sgrt2(1234.5678)  35.135452

test mili second
free       73
sqrt()    146
sqrt2()    7
*/