具有多输入的多输出 GP?

Multi-output GP with multi-inputs?

我正在尝试使用多维输入数据在 GPFlow 中实现多输出 GP。

我从 GPflow 的 this issue 中看到,'define a multidimensional base kernel and then apply the coregion on top of that' 可以实现多维输入。

我已经编写了以下代码,我知道对于同位素数据(获得所有输出),可以使用 this notebook 中描述的替代方法,但在这里我需要尝试 ICM,所以让我们继续代码下面。

但是,当我尝试 运行 以下代码时:

from gpflow.gpr import GPR
import gpflow
import numpy as np
from gpflow.kernels import Coregion


def f(x):
    def _y(_x):
        function_sum = 0
        for i in np.arange(0, len(_x) - 1):
            function_sum += (1 - _x[i]) ** 2 + 100 * ((_x[i + 1] - _x[i] ** 2) ** 2)
        return function_sum
    return np.atleast_2d([_y(_x) for _x in (np.atleast_2d(x))]).T


isotropic_X = np.random.rand(100, 2) * 4 - 2
Y1 = f(isotropic_X)
Y2 = f(isotropic_X) + np.random.normal(loc=2000, size=(100,1))
Y3 = f(isotropic_X) + np.random.normal(loc=-2000, size=(100,1))

# a Coregionalization kernel. The base kernel is Matern, and acts on the first ([0]) data dimension.
# the 'Coregion' kernel indexes the outputs, and actos on the second ([1]) data dimension
k1 = gpflow.kernels.Matern32(2)
coreg = Coregion(1, output_dim=3, rank=1, active_dims=[3]) # gpflow.kernels.Coregion(2, output_dim=2, rank=1)
coreg.W = np.random.rand(3, 1)
kern = k1 * coreg

# Augment the time data with ones or zeros to indicate the required output dimension
X_augmented = np.vstack((np.hstack((isotropic_X, np.zeros(shape=(isotropic_X.shape[0], 1)))),
                         np.hstack((isotropic_X, np.ones(shape=(isotropic_X.shape[0], 1)))),
                        np.hstack((isotropic_X, 2 * np.ones(shape=(isotropic_X.shape[0], 1))))))

# Augment the Y data to indicate which likeloihood we should use
Y_augmented = np.vstack((np.hstack((Y1, np.zeros(shape=(Y1.shape[0], 1)))),
                         np.hstack((Y2, np.ones(shape=(Y2.shape[0], 1)))),
                         np.hstack((Y3, 2 * np.ones(shape=(Y3.shape[0], 1))))))

# now buld the GP model as normal
m = GPR(X_augmented, Y_augmented, kern=kern)
m.optimize()

print(m.predict_f(np.array([[0.2, 0.2, 0], [0.4, 0.4, 0]])))

它 returns 我是这样的:

  "Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
Traceback (most recent call last):
  File "C:\Users\Administrator\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1356, in _do_call
    return fn(*args)
  File "C:\Users\Administrator\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1341, in _run_fn
    options, feed_dict, fetch_list, target_list, run_metadata)
  File "C:\Users\Administrator\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1429, in _call_tf_sessionrun
    run_metadata)
tensorflow.python.framework.errors_impl.InvalidArgumentError: indices[0] = 3 is not in [0, 3)
     [[{{node name.build_likelihood/name.kern.K/name.kern.coregion.K/GatherV2}}]]

所以我的问题是:
- 这是什么问题以及如何使用多维输入启用多输出 GP
- 我不太了解 gpflow 与 coregion 的工作流程,从 this multi-output gp slide, The ICM returns output GP from a additive form of a latent process $u$ sampled from a GP parameterized by its weight $W$. But in the gpflow notebook demo 我看不到任何潜在的过程,笔记本说''Coregion' 内核索引输出,并作用于增强 X 值的最后 ([1]) 数据维度(索引),这与幻灯片完全不同,我真的对这些不同的描述感到困惑,有什么提示吗?

问题仅在于您的偏移索引:核心区域化内核应该是

coreg = Coregion(input_dim=1, output_dim=3, rank=1, active_dims=[2])

因为active_dims=[2]索引第三列。

感谢您提供完全可重现的示例!我设法 运行 您的代码,并使用 AdamOptimizer 和 ScipyOptimizer 的几个步骤成功优化了模型,达到对数似然值 -2023.4。