SpaCy 自定义 NER 模型训练中 "drop" 的含义?
Meaning of "drop" in SpaCy custom NER model training?
下面的代码是 SpaCy 的命名实体识别 (NER
) 的示例训练循环。
for itn in range(100):
random.shuffle(train_data)
for raw_text, entity_offsets in train_data:
doc = nlp.make_doc(raw_text)
gold = GoldParse(doc, entities=entity_offsets)
nlp.update([doc], [gold], drop=0.5, sgd=optimizer)
nlp.to_disk("/model")
drop
根据 spacy
是辍学率。谁能详细解释一下same的意思?
下面的代码是 SpaCy 的命名实体识别 (NER
) 的示例训练循环。
for itn in range(100):
random.shuffle(train_data)
for raw_text, entity_offsets in train_data:
doc = nlp.make_doc(raw_text)
gold = GoldParse(doc, entities=entity_offsets)
nlp.update([doc], [gold], drop=0.5, sgd=optimizer)
nlp.to_disk("/model")
drop
根据 spacy
是辍学率。谁能详细解释一下same的意思?