当值的长度与索引的长度不匹配时,用 Nan 填充
Fill with Nan when Length of values does not match length of index
我想要一个看起来像这样的数据框。
a b
cars New
bikes nan
trains nan
假设如下...
list(oldDF["Transportation"].unique())=["cars", "bikes", "trains"]
list(oldDF["Condition"].unique())=["New"]
我的代码目前看起来像这样:
newList=["Transportation", "Condition"]
newDF=pf.DataFrame(columns=newList)
for i in newList:
newDF[i]= list(oldDF[i].unique())
我希望能够打印上面的数据框并用 nan 填充缺失值,而不是出现值错误。
使用 fillna 方法根据您的选择填充缺失值。
df['Condition'] = df['Condition'].fillna('')
这更像是一个隐藏的 pivot
问题
oldDF.melt().drop_duplicates().\
assign(index=lambda x : x.groupby('variable').cumcount()).\
pivot('index','variable','value')
Out[62]:
variable Condition Transportation
index
0 New cars
1 NaN bikes
2 NaN trains
from_dict
和 orient='index'
pd.DataFrame.from_dict({n: c.unique() for n, c in oldDF.iteritems()}, orient='index').T
Transportation Condition
0 cars New
1 bikes None
2 trains None
zip_longest
from itertools import zip_longest
pd.DataFrame([*zip_longest(*map(pd.unique, map(oldDF.get, oldDF)))], columns=[*oldDF])
Transportation Condition
0 cars New
1 bikes None
2 trains None
我想要一个看起来像这样的数据框。
a b
cars New
bikes nan
trains nan
假设如下...
list(oldDF["Transportation"].unique())=["cars", "bikes", "trains"]
list(oldDF["Condition"].unique())=["New"]
我的代码目前看起来像这样:
newList=["Transportation", "Condition"]
newDF=pf.DataFrame(columns=newList)
for i in newList:
newDF[i]= list(oldDF[i].unique())
我希望能够打印上面的数据框并用 nan 填充缺失值,而不是出现值错误。
使用 fillna 方法根据您的选择填充缺失值。
df['Condition'] = df['Condition'].fillna('')
这更像是一个隐藏的 pivot
问题
oldDF.melt().drop_duplicates().\
assign(index=lambda x : x.groupby('variable').cumcount()).\
pivot('index','variable','value')
Out[62]:
variable Condition Transportation
index
0 New cars
1 NaN bikes
2 NaN trains
from_dict
和 orient='index'
pd.DataFrame.from_dict({n: c.unique() for n, c in oldDF.iteritems()}, orient='index').T
Transportation Condition
0 cars New
1 bikes None
2 trains None
zip_longest
from itertools import zip_longest
pd.DataFrame([*zip_longest(*map(pd.unique, map(oldDF.get, oldDF)))], columns=[*oldDF])
Transportation Condition
0 cars New
1 bikes None
2 trains None