将 Pandas DF 转换为 Numpy 数组会在尝试预测时出现 # of features 错误?

Converting Pandas DF to Numpy Array gives me a # of features error when trying to predict?

我设置了一个 TPOT 回归器来预测数据集上的股票价格(经过一些特征工程之后),当我 运行 遇到涉及 XGBoost 回归器的问题时,我会收到一条错误消息说:

feature_names mismatch:

...然后它会显示我的数据集的列名列表。 Github 针对此问题提出了一个解决方案,建议在 train_test_split 期间将 X 特征和 Y 标签的数据帧转换为 Numpy 数组来处理它,这就是我所做的,但现在我收到一个错误:

X_train, X_test, Y_train, Y_test = train_test_split(X.values, Y.values, test_size = test_size, random_state = seed)
print('[INFO] Printing the shapes of the training/testing feature/label sets...')
print(X_train.shape)
print(X_test.shape)
print(Y_train.shape)
print(Y_test.shape)


[INFO] Printing the shapes of the training/testing feature/label sets...
(1374, 68)
(459, 68)
(1374,)
(459,)

Best pipeline: ExtraTreesRegressor(DecisionTreeRegressor(input_matrix, max_depth=1, min_samples_leaf=9, min_samples_split=11), bootstrap=False, max_features=0.8500000000000001, min_samples_leaf=1, min_samples_split=9, n_estimators=100)

Traceback (most recent call last):
  File "main2.py", line 656, in <module>
    predictions = best_model.predict(X_test)

File "C:\Users\windowshopr\AppData\Local\Programs\Python\Python36\lib\site-packages\tpot\base.py", line 921, in predict
        return self.fitted_pipeline_.predict(features)
      File "C:\Users\windowshopr\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\utils\metaestimators.py", line 116, in <lambda>
        out = lambda *args, **kwargs: self.fn(obj, *args, **kwargs)
      File "C:\Users\windowshopr\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\pipeline.py", line 422, in predict
        return self.steps[-1][-1].predict(Xt, **predict_params)
      File "C:\Users\windowshopr\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\ensemble\forest.py", line 693, in predict
        X = self._validate_X_predict(X)
      File "C:\Users\windowshopr\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\ensemble\forest.py", line 359, in _validate_X_predict
        return self.estimators_[0]._validate_X_predict(X, check_input=True)
      File "C:\Users\windowshopr\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\tree\tree.py", line 402, in _validate_X_predict
        % (self.n_features_, n_features))
    ValueError: Number of features of the model must match the input. Model n_features is 68 and input n_features is 69

Github 上的问题现已关闭,但我希望这里有人可以解释我在这里遗漏了什么?如您所见,有 68 个特征列和 1 个标签列。而且你还会看到这次模型甚至没有使用 XGBoost,但我希望能够使用 .predict() 函数来处理它提出的任何模型。

更新代码

好吧,我真的被困在这里了。我在下面发布了一个工作代码来复制错误。让我知道你看到了什么。输入股票代码 CLVS。我在整个过程中添加了数据框和数组的打印形状,它仍然说形状很好,所以我没有看到什么?您需要 Pandas 0.23(是的旧版本)并安装 TPOT 和 DASK。感谢:

def main():


    # 1. Input a stock ticker
    ticker_input = input('Which stock ticker would you like to predict?') # Start with CLVS for testing
    print('Getting the historical data for: ',ticker_input)










    # 2. Download the historical daily data
    # Import dependencies
    from datetime import datetime
    from pandas_datareader import data as web
    import pandas as pd
    pd.options.display.float_format = '{:,.2f}'.format
    import seaborn as sns
    import matplotlib.pyplot as plt
    import random
    import os
    import numpy as np
    import time
    # Downloading historical data as dataframe
    ex = 'yahoo'
    start = datetime(2000, 1, 1)
    end = datetime.now()
    dataset = web.DataReader(ticker_input, ex, start, end) #.reset_index()









    # 3. Construct the dataframe from the historical data
    # Only use the Adj Close, and use the open price
    # of the current day. Then shift all the other
    # data 1 day to make the dataset include the 
    # previous day's values for each. 

    # (This is because on the trading day, we won't know what the 
    # High or Low or Close or Volume is, but we would
    # know the Open.)
    dataset = dataset.drop(['Close'],axis=1)
    dataset['PrevOpen'] = dataset['Open'].shift(1)
    dataset['PrevHigh'] = dataset['High'].shift(1)
    dataset['PrevLow'] = dataset['Low'].shift(1)
    dataset['PrevAdjClose'] = dataset['Adj Close'].shift(1)
    dataset['PrevVol'] = dataset['Volume'].shift(1)

    dataset = dataset.drop(['High'],axis=1)
    dataset = dataset.drop(['Low'],axis=1)
    dataset = dataset.drop(['Volume'],axis=1)

    # Add in moving averages based on Opening prices
    dataset['9MA'] = dataset['Open'].rolling(window=9).mean()
    dataset['20MA'] = dataset['Open'].rolling(window=20).mean()



    # Get which industry the stock is in to get the industry performance data
    from bs4 import BeautifulSoup
    import requests
    headers = requests.utils.default_headers() 
    headers['User-Agent'] = 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36'
    # Get the industry name of the stock
    url = 'https://finance.yahoo.com/quote/' + ticker_input + '/profile'
    page = requests.get(url)
    soup = BeautifulSoup(page.text, 'html.parser')
    table = soup.find('p', {'class' :'D(ib) Va(t)'})
    industry = table.findAll('span')
    indust = industry[3].text
    print(indust)
    print('Getting Industry ETF historical data...')
    # Then get historical data for that industry's ETF
    if indust == "Biotechnology":
        etf_ticker = "IBB"
    elif indust == "Specialty Retail":
        etf_ticker = "XRT"
    elif indust == "Oil & Gas E&P":
        etf_ticker = "XOP"
    ex = 'yahoo'
    etf_df = web.DataReader(etf_ticker, ex, start, end)
    dataset['PrevIndOpen'] = etf_df['Open'].shift(1)
    dataset['PrevIndHigh'] = etf_df['High'].shift(1)
    dataset['PrevIndLow'] = etf_df['Low'].shift(1)
    dataset['PrevIndClose'] = etf_df['Adj Close'].shift(1)
    dataset['PrevIndVol'] = etf_df['Volume'].shift(1)





    # Reshape the dataframe to put Adj Close at the far right
    # so when we export the predictions dataset, the predictions
    # column will be right next to it for easier analysis
    dataset = dataset[['Open','9MA','20MA','PrevOpen','PrevHigh','PrevLow','PrevAdjClose','PrevVol','PrevIndOpen','PrevIndHigh','PrevIndLow','PrevIndClose','PrevIndVol','Adj Close']]










    # Disable the Future Warnings that repeat "needlessly" (for now)
    import warnings
    warnings.simplefilter(action='ignore', category=FutureWarning)
    warnings.filterwarnings("ignore")









    # 5. Explore the inital dataset
    # Show the shape of the dataset
    print("[INFO] features shape : {}".format(dataset.shape))

    # Print the feature names
    print("[INFO] dataset names : {}".format(dataset.columns))

    # Convert the dataframe into a Pandas dataframe and print the first 5 rows
    df = pd.DataFrame(dataset)
    print("[INFO] df type : {}".format(type(df)))
    print("[INFO] df shape: {}".format(df.shape))
    print(df.head())

    # Specify the column names and print
    df.columns = dataset.columns
    #print('[INFO] df shape with features:')
    #print(df.head())
    # This prints the same as above

    # Find any columns with missing values? If you find them, you either have to:
    # 1. Replace the missing value with a large negative number (e.g. -999).
    # 2. Replace the missing value with mean of the column.
    # 3. Replace the missing value with median of the column.
    # Because of our 1 day shift, the first row will have empty values,
    # so we'll drop them as one day won't make much difference in our entire model
    print('[INFO] Checking for any columns with no values...')
    df = df.dropna(how='any')
    print(pd.isnull(df).any())


    # Ensure numeric datatypes of the dataframe.
    # If a column has different datatype such as string or character, 
    # we need to map that column to a numeric datatype such as integer 
    # or float. For this dataset, the Date index column is one.
    print('[INFO] Feature types:')
    print(df.dtypes)

    # Print a statistical summary of the dataset for reference
    print('[INFO] Print a statistical summary of dataset:')
    print(df.describe())




    # # Reset the index column for FeatureTools to use Date as the index, then it'll revert it back after feature stuff is done
    # df = df.reset_index()


    # This is not  good way to drop the rows here because if there are any
    # nan values in the middle of the dataset, those will get lost too.
    # Need to work with this
    df = df.dropna()
    print(df)


    # 4. Hold out a prediction dataset to predict on later
    prediction_df = df.tail(90).copy()
    df = df.iloc[:-90,:].copy() # subtracting 90 rows/days from the dataset to use as the predictions dataset later








    # 7. Split the dataset into features (X) and target (Y)
    # Split into features (x) and target (y) and print the shapes of them
    X = df.drop("Adj Close", axis=1)
    Y = df["Adj Close"]
    print('Shape of features: ', X.shape)
    print('Shape of target: ', Y.shape)
    # Standardize the data. Commenting this out until you can figure out how to
    # unscale the prediction dataset for review
    #from sklearn.preprocessing import StandardScaler, MinMaxScaler
    #scaler = MinMaxScaler().fit(X)
    #scaled_X = scaler.transform(X)

    print('Printing X and Y shape :')
    print(X.shape)
    print(Y.shape)







    # 8. Split dataset into training and validation data
    # Split the data into training and testing data and print their shapes
    from sklearn.model_selection import train_test_split
    seed = 9
    test_size = 0.25
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = test_size, random_state = seed)
    print('[INFO] Printing the shapes of the training/testing feature/label sets...')
    print(X_train.shape)
    print(X_test.shape)
    print(Y_train.shape)
    print(Y_test.shape)

    X_train=X_train.values
    X_test=X_test.values
    Y_train=Y_train.values
    Y_test=Y_test.values
    print('[INFO] Printing the arrays of the training/testing feature/label sets...')
    print(X_train.shape)
    print(X_test.shape)
    print(Y_train.shape)
    print(Y_test.shape)







    # 9. Start a TPOT Auto Regression to find the best Regression model and export feature importances
    from sklearn.metrics import mean_squared_error, r2_score, explained_variance_score
    from tpot import TPOTRegressor
    import os
    # Create a custom config dictionary for TPOT to use.
    # I've made this list full of Regressors that use the
    # .feature_importances_ attribute. How to implement XGBoost
    # into the plotting of feature importances below? IF XGBOOST is 
    # present in the final model, then plot one way, ELSE, plot the
    # way it is now?
    tpot_config = {



        'sklearn.ensemble.ExtraTreesRegressor': {
            'n_estimators': [100],
            'max_features': np.arange(0.05, 1.01, 0.05),
            'min_samples_split': range(2, 21),
            'min_samples_leaf': range(1, 21),
            'bootstrap': [True, False]
        },



        'sklearn.tree.DecisionTreeRegressor': {
            'max_depth': range(1, 11),
            'min_samples_split': range(2, 21),
            'min_samples_leaf': range(1, 21)
        },

        'sklearn.ensemble.RandomForestRegressor': {
            'n_estimators': [100],
            'max_features': np.arange(0.05, 1.01, 0.05),
            'min_samples_split': range(2, 21),
            'min_samples_leaf': range(1, 21),
            'bootstrap': [True, False]
        },


        # Preprocesssors
        'sklearn.preprocessing.Binarizer': {
            'threshold': np.arange(0.0, 1.01, 0.05)
        },

        'sklearn.decomposition.FastICA': {
            'tol': np.arange(0.0, 1.01, 0.05)
        },

        'sklearn.cluster.FeatureAgglomeration': {
            'linkage': ['ward', 'complete', 'average'],
            'affinity': ['euclidean', 'l1', 'l2', 'manhattan', 'cosine']
        },

        'sklearn.preprocessing.MaxAbsScaler': {
        },

        'sklearn.preprocessing.MinMaxScaler': {
        },

        'sklearn.preprocessing.Normalizer': {
            'norm': ['l1', 'l2', 'max']
        },

        'sklearn.kernel_approximation.Nystroem': {
            'kernel': ['rbf', 'cosine', 'chi2', 'laplacian', 'polynomial', 'poly', 'linear', 'additive_chi2', 'sigmoid'],
            'gamma': np.arange(0.0, 1.01, 0.05),
            'n_components': range(1, 11)
        },

        'sklearn.decomposition.PCA': {
            'svd_solver': ['randomized'],
            'iterated_power': range(1, 11)
        },

        'sklearn.preprocessing.PolynomialFeatures': {
            'degree': [2],
            'include_bias': [False],
            'interaction_only': [False]
        },

        'sklearn.kernel_approximation.RBFSampler': {
            'gamma': np.arange(0.0, 1.01, 0.05)
        },

        'sklearn.preprocessing.RobustScaler': {
        },

        'sklearn.preprocessing.StandardScaler': {
        },

        'tpot.builtins.ZeroCount': {
        },

        'tpot.builtins.OneHotEncoder': {
            'minimum_fraction': [0.05, 0.1, 0.15, 0.2, 0.25],
            'sparse': [False],
            'threshold': [10]
        },


        # Selectors
        'sklearn.feature_selection.SelectFwe': {
            'alpha': np.arange(0, 0.05, 0.001),
            'score_func': {
                'sklearn.feature_selection.f_regression': None
            }
        },

        'sklearn.feature_selection.SelectPercentile': {
            'percentile': range(1, 100),
            'score_func': {
                'sklearn.feature_selection.f_regression': None
            }
        },

        'sklearn.feature_selection.VarianceThreshold': {
            'threshold': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2]
        },

        'sklearn.feature_selection.SelectFromModel': {
            'threshold': np.arange(0, 1.01, 0.05),
            'estimator': {
                'sklearn.ensemble.ExtraTreesRegressor': {
                    'n_estimators': [100],
                    'max_features': np.arange(0.05, 1.01, 0.05)
                }
            }
        }

    }

    # Cross Validation folds to run
    folds   = 10
    # Start the TPOT regression
    best_model = TPOTRegressor(use_dask=True,n_jobs=-1,config_dict=tpot_config, cv=folds, 
                               generations=5, population_size=20, verbosity=2, random_state=seed) #memory='./PipelineCache',       memory='auto',
    best_model.fit(X_train, Y_train)

    # Export the TPOT pipeline if you want to use it for anything later
    if os.path.exists('./Exported Pipelines'):
        pass
    else:
        os.mkdir('./Exported Pipelines')
    best_model.export('./Exported Pipelines/' + ticker_input + '-prediction-pipeline.py')

    # Extract what the best pipeline was and fit it to the training set
    # to get an idea of the most important features used by the model
    exctracted_best_model = best_model.fitted_pipeline_.steps[-1][1]
    # Train the `exctracted_best_model` using the training/vildation set.
    # You need to use the whole dataset in order to get feature importance for all the
    # features in your dataset.
    exctracted_best_model.fit(X_train, Y_train)

    # plot model's feature importance and save the plot for later
    feature_importance = exctracted_best_model.feature_importances_
    feature_importance = 100.0 * (feature_importance / feature_importance.max())
    sorted_idx = np.argsort(feature_importance)
    pos        = np.arange(sorted_idx.shape[0]) + .5
    plt.barh(pos, feature_importance[sorted_idx], align='center')
    plt.yticks(pos, df.columns[sorted_idx])
    plt.xlabel('Relative Importance')
    plt.title('Variable Importance')
    plt.savefig("feature_importance.png")
    plt.clf()
    plt.close()






print(X_test.shape)



    # 10. See the stats of the validation predictions from the tuned model and export more plots
    # Make predictions using the tuned model and display error metrics
    # R2 and Explained Variance, best is 1
    predictions = best_model.predict(X_test)
    print('=============================')
    print("TPOT's final score on testing dataset is : ", best_model.score(X_test, Y_test))
    print('=============================')
    print("[INFO] MSE on test set : {}".format(round(mean_squared_error(Y_test, predictions), 3)))
    print('[INFO] R2 Score on test set : {}'.format(round(r2_score(Y_test, predictions), 3)))
    print('[INFO] Explained Variance Score on test set : {}'.format(round(explained_variance_score(Y_test, predictions), 3)))

    # Plot between predictions and Y_test
    x_axis = np.array(range(0, predictions.shape[0]))
    plt.plot(x_axis, predictions, linestyle="--", marker="o", alpha=0.7, color='r', label="predictions")
    plt.plot(x_axis, Y_test, linestyle="--", marker="o", alpha=0.7, color='g', label="Y_test")
    plt.xlabel('Row number')
    plt.ylabel('PRICE')
    plt.title('Predictions vs Y_test')
    plt.legend(loc='lower right')
    plt.savefig("predictions_vs_ytest.png")
    plt.clf()
    plt.close()










    # 11. Use the model on the held-out prediction dataset
    # Now, run the model on the prediction dataset
    features = prediction_df.drop(['Adj Close'], axis=1)
    labels = prediction_df['Adj Close']
    # Fit the model to the prediction_df and predict the labels
    #tpot.fit(features, labels)
    results = best_model.predict(features)
    predictions_list = []
    for preds in results:
        predictions_list.append(preds)
    prediction_df['Predictions'] = predictions_list
    prediction_df.to_csv('Final Predictions Performance.csv', index=True)
    print('============================')
    print("[INFO] MSE on prediction set : {}".format(round(mean_squared_error(labels, results), 3)))
    print('[INFO] R2 Score on prediction set : {}'.format(round(r2_score(labels, results), 3)))
    print('[INFO] Explained Variance Score on prediction set : {}'.format(round(explained_variance_score(labels, results), 3)))










    # 12. Review the exported .csv file of the predictions, and review all your plots
    print('DONE!')


if __name__ == "__main__":
    main()

看来我找到了解决办法。我已经 运行 一些使用 XGBRegressor 和 RandomDecisionTrees 的模型,它似乎在工作。

只需打开 "X_train=X_train.values" 和 "X_test=X_test.values",但将 Y 作为数据框单独保留,因为当我更改这两个组时,出现错误。所以我暂时保留它。