使激光探测器在我的代码中有错误
making a laser detector have an error in my code
我正在制作一个程序,然后使用 opencv 库检测激光、圆圈和数字。这是我第一次使用 ros indigo,我真的不知道我在做什么,但是当我 运行 我的程序时,我收到一个快速重复的错误。这是我得到的错误:
[错误] [WallTime: 1565273888.861720] 回调错误:
追溯(最近一次通话):
文件“/opt/ros/indigo/lib/python2.7/dist-packages/rospy/topics.py”,第 720 行,在 _invoke_callback 中
cb(消息)
文件 "lazer3.py",第 89 行,在回调中
cv_image2 = self.convert_image(cv_image)
NameError:全局名称 'self' 未定义
错误出现在 cv_image2 = self.convert_image(cv_image)
行中,这是因为如果我删除 self 我会使用 self 我会得到一个不同的错误:
[错误] [WallTime: 1565274017.459066] 回调错误:
追溯(最近一次通话):
文件“/opt/ros/indigo/lib/python2.7/dist-packages/rospy/topics.py”,第 720 行,在 _invoke_callback 中
cb(消息)
文件 "lazer3.py",第 89 行,在回调中
cv_image2 = convert_image(cv_image)
文件 "lazer3.py",第 29 行,在 convert_image 中
labels = measure.label(thresh, neighbors=8, background=0)
AttributeError: 'module' 对象没有属性 'label'
这是我的代码:
from __future__ import print_function
import cv2
import numpy as np
import imutils
from imutils import contours
from skimage import measure
'''
def getPoint(cameraTip,dotXY,normalPoint):
slope= (cameraTip[2]-dotXY[2])/(cameraTip[1]-dotXY[1])
b=cameraTip[2]-(slope*cameraTip[1])
z=slope*normalPoint[1]+b
return [normalPoint[0],normalPoint[1],z]
'''
# Image Processing functions
def convert_image(image): # Image of kind bgr8
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (11, 11), 0)
#threshold the image to reveal light regions in the
# blurred image
thresh = cv2.threshold(blurred, 30, 255, cv2.THRESH_BINARY)[1]
# perform a series of erosions and dilations to remove
# any small blobs of noise from the thresholded image
thresh = cv2.erode(thresh, None, iterations=2)
thresh = cv2.dilate(thresh, None, iterations=4)
# perform a connected component analysis on the thresholded
# image, then initialize a mask to store only the "large"
# components
labels = measure.label(thresh, neighbors=8, background=0)
mask = np.zeros(thresh.shape, dtype="uint8")
# loop over the unique components
for label in np.unique(labels):
# if this is the background label, ignore it
if label == 0:
continue
# otherwise, construct the label mask and count the
# number of pixels
labelMask = np.zeros(thresh.shape, dtype="uint8")
labelMask[labels == label] = 255
numPixels = cv2.countNonZero(labelMask)
# if the number of pixels in the component is sufficiently
# large, then add it to our mask of "large blobs"
if numPixels > 300:
mask = cv2.add(mask, labelMask)
# find the contours in the mask, then sort them from left to
# right
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
cnts = contours.sort_contours(cnts)[0]
# loop over the contours
for (i, c) in enumerate(cnts):
# draw the bright spot on the image
(x, y, w, h) = cv2.boundingRect(c)
((cX, cY), radius) = cv2.minEnclosingCircle(c)
#x and y center are cX and cY
cv2.circle(image, (int(cX), int(cY)), int(radius),
(0, 0, 255), 3)
cv2.putText(image, "#{}".format(i + 1), (x, y - 15),
cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)
# show the output image
cv2.imshow("Image", image)
cv2.waitKey(1)
#camera.release()
return image
# ROS Interface
if __name__ == "__main__":
import rospy
from cv_bridge import CvBridge, CvBridgeError
from sensor_msgs.msg import Image
bridge = CvBridge()
def show_img(cv_image):
(rows,cols,channels) = cv_image.shape
if cols > 60 and rows > 60 :
cv2.circle(cv_image, (50,50), 10, 255)
cv2.imshow("Image window", cv_image)
cv2.waitKey(3)
image_pub = rospy.Publisher("image_topic_2", Image)
def callback(data):
try:
cv_image = bridge.imgmsg_to_cv2(data, "bgr8")
show_img(cv_image)
cv_image2 = self.convert_image(cv_image)
image_pub.publish(bridge.cv2_to_imgmsg(cv_image2, "bgr8"))
except CvBridgeError as e:
print(e)
image_sub = rospy.Subscriber("CM_040GE/image_raw", Image, callback)
rospy.init_node('image_converter', anonymous=True)
rospy.spin()
print("image_converter: Shutting down")
cv2.destroyAllWindows()
另外我想说清楚,只是因为代码相似,所以这不是我上一个问题的重复,因为我得到了一个不同的错误,我问的是一个完全不同的问题
如果函数 convert_image
是 class 的一个方法,那么你通常会做
# instantiate the class
my_obj = my_class()
# call the class' method
my_obj.convert_image(paramaters)
所以cv_image2 = self.convert_image(cv_image)
应该是cv_image2 = my_obj.convert_image(cv_image)
如果您不实例化 class,而只是调用一个函数,那么您可以去掉 self
- cv_image2 = convert_image(cv_image)
没有 是正确的 self
在那里,因为 convert_image()
是一个常规函数。
真正的错误是measure
没有label
attribute/function。除了,(取决于版本), skimage.measure.label
如您所说存在。
基于此(模块中无属性)问题的其他 SO 解决方案,尝试检查您使用的 skimage 版本是否具有 measure.label,尝试删除任何 .pyc 文件,并确保您有没有命名冲突或与您尝试导入的名称相同的模块。
编辑:
skimage v0.9.x 在 morphology
module: skimage.morphology.label
下有 label
功能。稍后移至 measure
。
我正在制作一个程序,然后使用 opencv 库检测激光、圆圈和数字。这是我第一次使用 ros indigo,我真的不知道我在做什么,但是当我 运行 我的程序时,我收到一个快速重复的错误。这是我得到的错误:
[错误] [WallTime: 1565273888.861720] 回调错误: 追溯(最近一次通话): 文件“/opt/ros/indigo/lib/python2.7/dist-packages/rospy/topics.py”,第 720 行,在 _invoke_callback 中 cb(消息) 文件 "lazer3.py",第 89 行,在回调中 cv_image2 = self.convert_image(cv_image) NameError:全局名称 'self' 未定义
错误出现在 cv_image2 = self.convert_image(cv_image)
行中,这是因为如果我删除 self 我会使用 self 我会得到一个不同的错误:
[错误] [WallTime: 1565274017.459066] 回调错误: 追溯(最近一次通话): 文件“/opt/ros/indigo/lib/python2.7/dist-packages/rospy/topics.py”,第 720 行,在 _invoke_callback 中 cb(消息) 文件 "lazer3.py",第 89 行,在回调中 cv_image2 = convert_image(cv_image) 文件 "lazer3.py",第 29 行,在 convert_image 中 labels = measure.label(thresh, neighbors=8, background=0) AttributeError: 'module' 对象没有属性 'label'
这是我的代码:
from __future__ import print_function
import cv2
import numpy as np
import imutils
from imutils import contours
from skimage import measure
'''
def getPoint(cameraTip,dotXY,normalPoint):
slope= (cameraTip[2]-dotXY[2])/(cameraTip[1]-dotXY[1])
b=cameraTip[2]-(slope*cameraTip[1])
z=slope*normalPoint[1]+b
return [normalPoint[0],normalPoint[1],z]
'''
# Image Processing functions
def convert_image(image): # Image of kind bgr8
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (11, 11), 0)
#threshold the image to reveal light regions in the
# blurred image
thresh = cv2.threshold(blurred, 30, 255, cv2.THRESH_BINARY)[1]
# perform a series of erosions and dilations to remove
# any small blobs of noise from the thresholded image
thresh = cv2.erode(thresh, None, iterations=2)
thresh = cv2.dilate(thresh, None, iterations=4)
# perform a connected component analysis on the thresholded
# image, then initialize a mask to store only the "large"
# components
labels = measure.label(thresh, neighbors=8, background=0)
mask = np.zeros(thresh.shape, dtype="uint8")
# loop over the unique components
for label in np.unique(labels):
# if this is the background label, ignore it
if label == 0:
continue
# otherwise, construct the label mask and count the
# number of pixels
labelMask = np.zeros(thresh.shape, dtype="uint8")
labelMask[labels == label] = 255
numPixels = cv2.countNonZero(labelMask)
# if the number of pixels in the component is sufficiently
# large, then add it to our mask of "large blobs"
if numPixels > 300:
mask = cv2.add(mask, labelMask)
# find the contours in the mask, then sort them from left to
# right
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
cnts = contours.sort_contours(cnts)[0]
# loop over the contours
for (i, c) in enumerate(cnts):
# draw the bright spot on the image
(x, y, w, h) = cv2.boundingRect(c)
((cX, cY), radius) = cv2.minEnclosingCircle(c)
#x and y center are cX and cY
cv2.circle(image, (int(cX), int(cY)), int(radius),
(0, 0, 255), 3)
cv2.putText(image, "#{}".format(i + 1), (x, y - 15),
cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)
# show the output image
cv2.imshow("Image", image)
cv2.waitKey(1)
#camera.release()
return image
# ROS Interface
if __name__ == "__main__":
import rospy
from cv_bridge import CvBridge, CvBridgeError
from sensor_msgs.msg import Image
bridge = CvBridge()
def show_img(cv_image):
(rows,cols,channels) = cv_image.shape
if cols > 60 and rows > 60 :
cv2.circle(cv_image, (50,50), 10, 255)
cv2.imshow("Image window", cv_image)
cv2.waitKey(3)
image_pub = rospy.Publisher("image_topic_2", Image)
def callback(data):
try:
cv_image = bridge.imgmsg_to_cv2(data, "bgr8")
show_img(cv_image)
cv_image2 = self.convert_image(cv_image)
image_pub.publish(bridge.cv2_to_imgmsg(cv_image2, "bgr8"))
except CvBridgeError as e:
print(e)
image_sub = rospy.Subscriber("CM_040GE/image_raw", Image, callback)
rospy.init_node('image_converter', anonymous=True)
rospy.spin()
print("image_converter: Shutting down")
cv2.destroyAllWindows()
另外我想说清楚,只是因为代码相似,所以这不是我上一个问题的重复,因为我得到了一个不同的错误,我问的是一个完全不同的问题
如果函数 convert_image
是 class 的一个方法,那么你通常会做
# instantiate the class
my_obj = my_class()
# call the class' method
my_obj.convert_image(paramaters)
所以cv_image2 = self.convert_image(cv_image)
应该是cv_image2 = my_obj.convert_image(cv_image)
如果您不实例化 class,而只是调用一个函数,那么您可以去掉 self
- cv_image2 = convert_image(cv_image)
没有 是正确的 self
在那里,因为 convert_image()
是一个常规函数。
真正的错误是measure
没有label
attribute/function。除了,(取决于版本), skimage.measure.label
如您所说存在。
基于此(模块中无属性)问题的其他 SO 解决方案,尝试检查您使用的 skimage 版本是否具有 measure.label,尝试删除任何 .pyc 文件,并确保您有没有命名冲突或与您尝试导入的名称相同的模块。
编辑:
skimage v0.9.x 在 morphology
module: skimage.morphology.label
下有 label
功能。稍后移至 measure
。