拟合多标签文本分类模型时出现错误

Bugs when fitting Multi label text classification models

我现在正在尝试为多标签文本分类问题拟合分类模型。

我有一个训练集 X_train,其中包含已清理文本的列表,例如

["I am constructing Markov chains with  to  states and inferring     
transition probabilities empirically by simply counting how many 
times I saw each transition in my raw data",
"I know the chips only of the  players of my table and mine obviously I 
also know the total number of chips the max and min amount chips the 
players have and the average stackIs it possible to make an 
approximation of my probability of winningI have,
...]

X_train中每个文本对应的train多个标签集y,比如

[['hypothesis-testing', 'statistical-significance', 'markov-process'],
['probability', 'normal-distribution', 'games'],
...]

现在我想要拟合一个模型,该模型可以预测与 X_train.

具有相同格式的文本集 X_test 中的标签

我已经使用 MultiLabelBinarizer 转换标签并使用 TfidfVectorizer 转换训练集中清理后的文本。

multilabel_binarizer = MultiLabelBinarizer()
multilabel_binarizer.fit(y)
Y = multilabel_binarizer.transform(y)

vectorizer = TfidfVectorizer(stop_words = stopWordList)
vectorizer.fit(X_train)
x_train = vectorizer.transform(X_train)

但是当我尝试拟合模型时,我总是得到 bugs.I have tried OneVsRestClassifier and LogisticRegression.

当我拟合 OneVsRestClassifier 模型时,我遇到了像

这样的错误
Traceback (most recent call last):
  File "/opt/conda/envs/data3/lib/python3.6/socketserver.py", line 317, in _handle_request_noblock
    self.process_request(request, client_address)
  File "/opt/conda/envs/data3/lib/python3.6/socketserver.py", line 348, in process_request
    self.finish_request(request, client_address)
  File "/opt/conda/envs/data3/lib/python3.6/socketserver.py", line 361, in finish_request
    self.RequestHandlerClass(request, client_address, self)
  File "/opt/conda/envs/data3/lib/python3.6/socketserver.py", line 696, in __init__
    self.handle()
  File "/usr/local/spark/python/pyspark/accumulators.py", line 268, in handle
    poll(accum_updates)
  File "/usr/local/spark/python/pyspark/accumulators.py", line 241, in poll
    if func():
  File "/usr/local/spark/python/pyspark/accumulators.py", line 245, in accum_updates
    num_updates = read_int(self.rfile)
  File "/usr/local/spark/python/pyspark/serializers.py", line 714, in read_int
    raise EOFError
EOFError

当我拟合 LogisticRegression 模型时,我遇到了像

这样的错误
/opt/conda/envs/data3/lib/python3.6/site-packages/sklearn/linear_model/sag.py:326: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge
  "the coef_ did not converge", ConvergenceWarning)

谁知道问题出在哪里以及如何解决?非常感谢。

OneVsRestClassifier 每个 class 适合一个 classifier。您需要告诉它您想要哪种类型的 classifier(例如 Losgistic 回归)。

以下代码适用于我:

from sklearn.multiclass import OneVsRestClassifier
from sklearn.linear_model import LogisticRegression

classifier = OneVsRestClassifier(LogisticRegression())
classifier.fit(x_train, Y)

X_test= ["I play with Markov chains"]
x_test = vectorizer.transform(X_test)

classifier.predict(x_test)

输出:数组([[0, 1, 1, 0, 0, 1]])