Model() 得到参数 'nr_class' 的多个值 - SpaCy 多分类模型(BERT 集成)
Model() got multiple values for argument 'nr_class' - SpaCy multi-classification model (BERT integration)
您好,我正在使用新的 SpaCy 模型 en_pytt_bertbaseuncased_lg
实现多分类模型 (5 类)。新管道的代码在这里:
nlp = spacy.load('en_pytt_bertbaseuncased_lg')
textcat = nlp.create_pipe(
'pytt_textcat',
config={
"nr_class":5,
"exclusive_classes": True,
}
)
nlp.add_pipe(textcat, last = True)
textcat.add_label("class1")
textcat.add_label("class2")
textcat.add_label("class3")
textcat.add_label("class4")
textcat.add_label("class5")
训练代码如下,基于此处的示例(https://pypi.org/project/spacy-pytorch-transformers/):
def extract_cat(x):
for key in x.keys():
if x[key]:
return key
# get names of other pipes to disable them during training
n_iter = 250 # number of epochs
train_data = list(zip(train_texts, [{"cats": cats} for cats in train_cats]))
dev_cats_single = [extract_cat(x) for x in dev_cats]
train_cats_single = [extract_cat(x) for x in train_cats]
cats = list(set(train_cats_single))
recall = {}
for c in cats:
if c is not None:
recall['dev_'+c] = []
recall['train_'+c] = []
optimizer = nlp.resume_training()
batch_sizes = compounding(1.0, round(len(train_texts)/2), 1.001)
for i in range(n_iter):
random.shuffle(train_data)
losses = {}
batches = minibatch(train_data, size=batch_sizes)
for batch in batches:
texts, annotations = zip(*batch)
nlp.update(texts, annotations, sgd=optimizer, drop=0.2, losses=losses)
print(i, losses)
所以我的数据结构如下所示:
[('TEXT TEXT TEXT',
{'cats': {'class1': False,
'class2': False,
'class3': False,
'class4': True,
'class5': False}}), ... ]
我不确定为什么会出现以下错误:
TypeError Traceback (most recent call last)
<ipython-input-32-1588a4eadc8d> in <module>
21
22
---> 23 optimizer = nlp.resume_training()
24 batch_sizes = compounding(1.0, round(len(train_texts)/2), 1.001)
25
TypeError: Model() got multiple values for argument 'nr_class'
编辑:
如果我去掉 nr_class 参数,我会在这里得到这个错误:
ValueError: operands could not be broadcast together with shapes (1,2) (1,5)
我实际上认为这会发生,因为我没有指定 nr_class 参数。那是对的吗?
这是我们发布的 spacy-pytorch-transformers
最新版本的回归。对此感到抱歉!
究其根本,这又是**kwargs
的弊端。我期待改进 spaCy API 以防止将来出现这些问题。
您可以在此处查看违规行:https://github.com/explosion/spacy-pytorch-transformers/blob/c1def95e1df783c69bff9bc8b40b5461800e9231/spacy_pytorch_transformers/pipeline/textcat.py#L71。我们提供 nr_class
位置参数,它与您在配置期间传入的显式参数重叠。
为了解决该问题,您只需从要传递给 spacy.create_pipe()
.
的 config
字典中删除 nr_class
键
您好,我正在使用新的 SpaCy 模型 en_pytt_bertbaseuncased_lg
实现多分类模型 (5 类)。新管道的代码在这里:
nlp = spacy.load('en_pytt_bertbaseuncased_lg')
textcat = nlp.create_pipe(
'pytt_textcat',
config={
"nr_class":5,
"exclusive_classes": True,
}
)
nlp.add_pipe(textcat, last = True)
textcat.add_label("class1")
textcat.add_label("class2")
textcat.add_label("class3")
textcat.add_label("class4")
textcat.add_label("class5")
训练代码如下,基于此处的示例(https://pypi.org/project/spacy-pytorch-transformers/):
def extract_cat(x):
for key in x.keys():
if x[key]:
return key
# get names of other pipes to disable them during training
n_iter = 250 # number of epochs
train_data = list(zip(train_texts, [{"cats": cats} for cats in train_cats]))
dev_cats_single = [extract_cat(x) for x in dev_cats]
train_cats_single = [extract_cat(x) for x in train_cats]
cats = list(set(train_cats_single))
recall = {}
for c in cats:
if c is not None:
recall['dev_'+c] = []
recall['train_'+c] = []
optimizer = nlp.resume_training()
batch_sizes = compounding(1.0, round(len(train_texts)/2), 1.001)
for i in range(n_iter):
random.shuffle(train_data)
losses = {}
batches = minibatch(train_data, size=batch_sizes)
for batch in batches:
texts, annotations = zip(*batch)
nlp.update(texts, annotations, sgd=optimizer, drop=0.2, losses=losses)
print(i, losses)
所以我的数据结构如下所示:
[('TEXT TEXT TEXT',
{'cats': {'class1': False,
'class2': False,
'class3': False,
'class4': True,
'class5': False}}), ... ]
我不确定为什么会出现以下错误:
TypeError Traceback (most recent call last)
<ipython-input-32-1588a4eadc8d> in <module>
21
22
---> 23 optimizer = nlp.resume_training()
24 batch_sizes = compounding(1.0, round(len(train_texts)/2), 1.001)
25
TypeError: Model() got multiple values for argument 'nr_class'
编辑:
如果我去掉 nr_class 参数,我会在这里得到这个错误:
ValueError: operands could not be broadcast together with shapes (1,2) (1,5)
我实际上认为这会发生,因为我没有指定 nr_class 参数。那是对的吗?
这是我们发布的 spacy-pytorch-transformers
最新版本的回归。对此感到抱歉!
究其根本,这又是**kwargs
的弊端。我期待改进 spaCy API 以防止将来出现这些问题。
您可以在此处查看违规行:https://github.com/explosion/spacy-pytorch-transformers/blob/c1def95e1df783c69bff9bc8b40b5461800e9231/spacy_pytorch_transformers/pipeline/textcat.py#L71。我们提供 nr_class
位置参数,它与您在配置期间传入的显式参数重叠。
为了解决该问题,您只需从要传递给 spacy.create_pipe()
.
config
字典中删除 nr_class
键