使用 de Boor 算法的 B 样条导数
B-Spline derivative using de Boor's algorithm
维基百科为我们提供了德布尔算法的 Python 实现:
def deBoor(k, x, t, c, p):
"""
Evaluates S(x).
Args
----
k: index of knot interval that contains x
x: position
t: array of knot positions, needs to be padded as described above
c: array of control points
p: degree of B-spline
"""
d = [c[j + k - p] for j in range(0, p+1)]
for r in range(1, p+1):
for j in range(p, r-1, -1):
alpha = (x - t[j+k-p]) / (t[j+1+k-r] - t[j+k-p])
d[j] = (1.0 - alpha) * d[j-1] + alpha * d[j]
return d[p]
B-Spline插值曲线的导数(甚至n阶导数)是否有类似的算法计算?
我知道从数学上讲它可以简化为使用低阶样条,但不能将其应用于 de Boor 算法。
如果你想同时计算值和它的导数,那么只需要替换所有依赖于x[的值v是合理的=21=] 与元组 (v, dv/dx)
然后您可以在加法或乘法时应用加法和乘法规则:https://en.wikipedia.org/wiki/Product_rule
你提供的函数会变成这样,例如:
def deBoorWithDerivative(k, x, t, c, p):
"""
Evaluates (S(x), dS(x)/dx).
Args
----
k: index of knot interval that contains x
x: position
t: array of knot positions, needs to be padded as described above
c: array of control points
p: degree of B-spline
"""
d = [(c[j + k - p],0) for j in range(0, p+1)]
for r in range(1, p+1):
for j in range(p, r-1, -1):
dalpha = 1.0/(t[j+1+k-r] - t[j+k-p])
alpha = (x - t[j+k-p]) * dalpha
d[j] = ( (1.0 - alpha) * d[j-1][0] + alpha * d[j][0],
-dalpha * d[j-1][0] + (1.0 - alpha) * d[j-1][1]
+dalpha * d[j][0] + alpha*d[j][1] )
return d[p]
我想我找到了将 de Boor 算法重新用于曲线导数的正确方法。
首先,我们考虑B样条曲线的定义。它是控制点的线性组合:
(1)
因此,导数是基函数导数的线性组合
(2)
基函数的导数定义如下:
(3)
我们将 (3) 插入到 (2) 中,经过这里 http://public.vrac.iastate.edu/~oliver/courses/me625/week5b.pdf 描述的一些代数功夫后,我们得到:
(4),
其中
B样条曲线的导数就是建立在新控制点Q之上的(p-1)次新B样条曲线。
现在,为了使用 de Boor 算法,我们计算新的控制点集并将样条度数 p 降低 1:
def deBoorDerivative(k, x, t, c, p):
"""
Evaluates S(x).
Args
----
k: index of knot interval that contains x
x: position
t: array of knot positions, needs to be padded as described above
c: array of control points
p: degree of B-spline
"""
q = [p * (c[j+k-p+1] - c[j+k-p]) / (t[j+k+1] - t[j+k-p+1]) for j in range(0, p)]
for r in range(1, p):
for j in range(p-1, r-1, -1):
right = j+1+k-r
left = j+k-(p-1)
alpha = (x - t[left]) / (t[right] - t[left])
q[j] = (1.0 - alpha) * q[j-1] + alpha * q[j]
return q[p-1]
测试:
import numpy as np
import math as m
points = np.array([[i, m.sin(i / 3.0), m.cos(i / 2)] for i in range(0, 11)])
knots = np.array([0, 0, 0, 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.0, 1.0, 1.0])
def finiteDifferenceDerivative(k, x, t, c, p):
""" Third order finite difference derivative """
f = lambda xx : deBoor(k, xx, t, c, p)
dx = 1e-7
return (- f(x + 2 * dx) \
+ 8 * f(x + dx) \
- 8 * f(x - dx) \
+ f(x - 2 * dx)) / ( 12 * dx )
print "Derivatives: "·
print "De Boor:\t", deBoorDerivative(7, 0.44, knots, points, 3)
print "Finite Difference:\t", finiteDifferenceDerivative(7, 0.44, knots, points, 3)
输出:
Derivatives:
De Boor: [10. 0.36134438 2.63969004]
Finite Difference: [9.99999999 0.36134438 2.63969004]
维基百科为我们提供了德布尔算法的 Python 实现:
def deBoor(k, x, t, c, p):
"""
Evaluates S(x).
Args
----
k: index of knot interval that contains x
x: position
t: array of knot positions, needs to be padded as described above
c: array of control points
p: degree of B-spline
"""
d = [c[j + k - p] for j in range(0, p+1)]
for r in range(1, p+1):
for j in range(p, r-1, -1):
alpha = (x - t[j+k-p]) / (t[j+1+k-r] - t[j+k-p])
d[j] = (1.0 - alpha) * d[j-1] + alpha * d[j]
return d[p]
B-Spline插值曲线的导数(甚至n阶导数)是否有类似的算法计算?
我知道从数学上讲它可以简化为使用低阶样条,但不能将其应用于 de Boor 算法。
如果你想同时计算值和它的导数,那么只需要替换所有依赖于x[的值v是合理的=21=] 与元组 (v, dv/dx)
然后您可以在加法或乘法时应用加法和乘法规则:https://en.wikipedia.org/wiki/Product_rule
你提供的函数会变成这样,例如:
def deBoorWithDerivative(k, x, t, c, p):
"""
Evaluates (S(x), dS(x)/dx).
Args
----
k: index of knot interval that contains x
x: position
t: array of knot positions, needs to be padded as described above
c: array of control points
p: degree of B-spline
"""
d = [(c[j + k - p],0) for j in range(0, p+1)]
for r in range(1, p+1):
for j in range(p, r-1, -1):
dalpha = 1.0/(t[j+1+k-r] - t[j+k-p])
alpha = (x - t[j+k-p]) * dalpha
d[j] = ( (1.0 - alpha) * d[j-1][0] + alpha * d[j][0],
-dalpha * d[j-1][0] + (1.0 - alpha) * d[j-1][1]
+dalpha * d[j][0] + alpha*d[j][1] )
return d[p]
我想我找到了将 de Boor 算法重新用于曲线导数的正确方法。
首先,我们考虑B样条曲线的定义。它是控制点的线性组合: (1)
因此,导数是基函数导数的线性组合
(2)
基函数的导数定义如下:
(3)
我们将 (3) 插入到 (2) 中,经过这里 http://public.vrac.iastate.edu/~oliver/courses/me625/week5b.pdf 描述的一些代数功夫后,我们得到:
(4), 其中
B样条曲线的导数就是建立在新控制点Q之上的(p-1)次新B样条曲线。 现在,为了使用 de Boor 算法,我们计算新的控制点集并将样条度数 p 降低 1:
def deBoorDerivative(k, x, t, c, p):
"""
Evaluates S(x).
Args
----
k: index of knot interval that contains x
x: position
t: array of knot positions, needs to be padded as described above
c: array of control points
p: degree of B-spline
"""
q = [p * (c[j+k-p+1] - c[j+k-p]) / (t[j+k+1] - t[j+k-p+1]) for j in range(0, p)]
for r in range(1, p):
for j in range(p-1, r-1, -1):
right = j+1+k-r
left = j+k-(p-1)
alpha = (x - t[left]) / (t[right] - t[left])
q[j] = (1.0 - alpha) * q[j-1] + alpha * q[j]
return q[p-1]
测试:
import numpy as np
import math as m
points = np.array([[i, m.sin(i / 3.0), m.cos(i / 2)] for i in range(0, 11)])
knots = np.array([0, 0, 0, 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.0, 1.0, 1.0])
def finiteDifferenceDerivative(k, x, t, c, p):
""" Third order finite difference derivative """
f = lambda xx : deBoor(k, xx, t, c, p)
dx = 1e-7
return (- f(x + 2 * dx) \
+ 8 * f(x + dx) \
- 8 * f(x - dx) \
+ f(x - 2 * dx)) / ( 12 * dx )
print "Derivatives: "·
print "De Boor:\t", deBoorDerivative(7, 0.44, knots, points, 3)
print "Finite Difference:\t", finiteDifferenceDerivative(7, 0.44, knots, points, 3)
输出:
Derivatives:
De Boor: [10. 0.36134438 2.63969004]
Finite Difference: [9.99999999 0.36134438 2.63969004]