ggpubr 中是否有一些代码将 P 值转换为非科学值以添加到图形中
Is there some code in ggpubr that turns the P value to non-scientific to add to graph
GGPUBR 已将 P 值添加到散点图上,但我需要它是非科学的。
我试过下面的代码,但是没有用。
compare_means(formula, data, method = "pearson", paired = FALSE,
group.by = NULL, ref.group = NULL, symnum.args = list(),
p.adjust.method = "holm", ...)
my_data <- read.csv("qPCR.csv")
library(ggpubr)
ggscatter(my_data,
x = "Intenties"
y = "qPCR",
size = 4,
color = '#a8329b',
add = 'reg.line',
add.params = list(color='black'),
cor.coef = TRUE,
cor.coeff.args = list(output.type = 'text', size = 5,
color = '#a8329b', label.sep = "\n"),
cor.method = "pearson",
conf.int = TRUE,
xlab = "Breath",
ylab = "qPCR ml/copies log")
p 值不是很科学1[ASA 关于 p 值的声明],但如果你的意思是你得到的是科学计数法,我编了一些数据,答案不是科学计数法。也许您的 p 值结果非常低。
my_data <- data.frame("Intenties" = 1:100, "qPCR" = rnorm(100, 100, 15))
ggscatter(my_data,
x = "Intenties",
y = "qPCR",
size = 4,
color = '#a8329b',
add = 'reg.line',
add.params = list(color='black'),
cor.coef = FALSE,
# cor.coeff.args = list(output.type = 'text', size = 5,
# color = '#a8329b', label.sep = "\n"),
cor.method = "pearson",
conf.int = TRUE,
xlab = "Breath",
ylab = "qPCR ml/copies log") +
annotate("text", 25, 125, label = "p < 0.1")
GGPUBR 已将 P 值添加到散点图上,但我需要它是非科学的。
我试过下面的代码,但是没有用。
compare_means(formula, data, method = "pearson", paired = FALSE,
group.by = NULL, ref.group = NULL, symnum.args = list(),
p.adjust.method = "holm", ...)
my_data <- read.csv("qPCR.csv")
library(ggpubr)
ggscatter(my_data,
x = "Intenties"
y = "qPCR",
size = 4,
color = '#a8329b',
add = 'reg.line',
add.params = list(color='black'),
cor.coef = TRUE,
cor.coeff.args = list(output.type = 'text', size = 5,
color = '#a8329b', label.sep = "\n"),
cor.method = "pearson",
conf.int = TRUE,
xlab = "Breath",
ylab = "qPCR ml/copies log")
p 值不是很科学1[ASA 关于 p 值的声明],但如果你的意思是你得到的是科学计数法,我编了一些数据,答案不是科学计数法。也许您的 p 值结果非常低。
my_data <- data.frame("Intenties" = 1:100, "qPCR" = rnorm(100, 100, 15))
ggscatter(my_data,
x = "Intenties",
y = "qPCR",
size = 4,
color = '#a8329b',
add = 'reg.line',
add.params = list(color='black'),
cor.coef = FALSE,
# cor.coeff.args = list(output.type = 'text', size = 5,
# color = '#a8329b', label.sep = "\n"),
cor.method = "pearson",
conf.int = TRUE,
xlab = "Breath",
ylab = "qPCR ml/copies log") +
annotate("text", 25, 125, label = "p < 0.1")