使用 word2vec 进行文本分类

Text Classification with word2vec

我在做文本分类,打算用word2vec词嵌入。 我已经使用 gensim 模块进行 word2vec 训练。

我已经尝试了几个选项。但是我收到错误消息 'xyz' 不在词汇表中。我找不到我的错误。

文本处理

def clean_text(text):

text = text.translate(string.punctuation)

text = text.lower().split()

stops = set(stopwords.words("english"))
text = [w for w in text if not w in stops]

text = " ".join(text)
text = re.sub(r"[^\w\s]", " ",text)
text = re.sub(r"[^A-Za-z0-9^,!.\/'+-=]", " ",text)

text = text.split()
lemmatizer = WordNetLemmatizer()
lemmatized_words = [lemmatizer.lemmatize(w) for w in text]
text = " ".join(lemmatized_words)


return text

data['text'] = data['text'].map(lambda x: clean_text(x))

请帮我解决问题。

定义语料库

def build_corpus(data):
"Creates a list of lists containing words from each sentence"
corpus = []
for col in ['text']:
    for sentence in data[col].iteritems():
        word_list = sentence[1].split(" ")
        corpus.append(word_list)
return corpus

corpus = build_corpus(data)

Word2vec 模型

from gensim.models import word2vec
 model = word2vec.Word2Vec(corpus, size=100, window=20, min_count=20,    workers=12, sg=1)

words = list(model.wv.vocab)

tokenizer = Tokenizer()
X = data.text
tokenizer.fit_on_texts(X)
sequences = tokenizer.texts_to_sequences(X)
X = pad_sequences(sequences, maxlen=10000)

embedding_vector_size=100

vocab_size = len(words)
embedding_matrix = np.zeros((vocab_size, embedding_vector_size))
for index, word in enumerate(words):    
 embedding_vector = model.wv[word]
 if embedding_vector is not None:
    embedding_matrix[index] = embedding_vector

现在我在下游分类任务中使用我创建的词嵌入。

分类模型

labels = data['Priority']

我有两个优先事项。我要分类。

X_train, X_test, y_train, y_test = train_test_split(X , labels, test_size=0.25, random_state=42)

我正在使用以下网络进行分类

model3 = Sequential()
model3.add(Embedding(input_dim = vocab_size, output_dim = embedding_vector_size, input_length = max_len, weights=[embedding_matrix]))
model3.add(SpatialDropout1D(0.7))
model3.add(LSTM(64, dropout=0.7, recurrent_dropout=0.7))
model3.add(Dense(2, activation='softmax'))
model3.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc'])
print(model3.summary())

我在这里遇到错误:

'ValueError: "input_length" is 10000, but received input has shape (None, 3)'

请帮我解决一下out.Thank你

并非所有来自 corpus 的单词都会保留在 word2vec 模型中。

替换:

vocab_size = len(tokenizer.word_index) + 1

有:

vocab_size = len(words)

并替换:

for word, i in tokenizer.word_index.items():

有:

for i, word in enumerate(words):

从而确保您的嵌入矩阵仅包含模型中的单词。