AttributeError: module 'scipy.misc' has no attribute 'toimage'

AttributeError: module 'scipy.misc' has no attribute 'toimage'

执行以下代码时:

scipy.misc.toimage(output * 255, high=255, low=0, cmin=0, cmax=255).save(
    params.result_dir + 'final/%5d_00_%d_out.png' % (test_id, ratio))

我收到以下错误:

AttributeError: module 'scipy.misc' has no attribute 'toimage'

我尝试按照此处所述安装 Pillow:scipy.misc module has no attribute imread? 但同样的错误仍然存​​在。请帮忙。谢谢

当前 scipy 版本 1.3.0 不包括 toimage() 1.3.0 docs here 尝试安装包含 toimage()scipy 1.2.01.1.0 1.2.0 docs here

scipy.misc.toimage() 函数在 Scipy 1.0.0 中被弃用,并在 1.3.0 版本中被完全删除。来自 1.3.0 release notes:

Funtions from scipy.interpolate (spleval, spline, splmake, and spltopp) and functions from scipy.misc (bytescale, fromimage, imfilter, imread, imresize, imrotate, imsave, imshow, toimage) have been removed. The former set has been deprecated since v0.19.0 and the latter has been deprecated since v1.0.0.

v1.1.0 文档的注释 link 显示了使用的内容;来自 scipy.misc.toimage() documentation for v1.1.0:

Use Pillow’s Image.fromarray directly instead.

但是,该函数比 Image.fromarray 能做的更多。你可以 port the original function:

import numpy as np
from PIL import Image


_errstr = "Mode is unknown or incompatible with input array shape."


def bytescale(data, cmin=None, cmax=None, high=255, low=0):
    """
    Byte scales an array (image).
    Byte scaling means converting the input image to uint8 dtype and scaling
    the range to ``(low, high)`` (default 0-255).
    If the input image already has dtype uint8, no scaling is done.
    This function is only available if Python Imaging Library (PIL) is installed.
    Parameters
    ----------
    data : ndarray
        PIL image data array.
    cmin : scalar, optional
        Bias scaling of small values. Default is ``data.min()``.
    cmax : scalar, optional
        Bias scaling of large values. Default is ``data.max()``.
    high : scalar, optional
        Scale max value to `high`.  Default is 255.
    low : scalar, optional
        Scale min value to `low`.  Default is 0.
    Returns
    -------
    img_array : uint8 ndarray
        The byte-scaled array.
    Examples
    --------
    >>> from scipy.misc import bytescale
    >>> img = np.array([[ 91.06794177,   3.39058326,  84.4221549 ],
    ...                 [ 73.88003259,  80.91433048,   4.88878881],
    ...                 [ 51.53875334,  34.45808177,  27.5873488 ]])
    >>> bytescale(img)
    array([[255,   0, 236],
           [205, 225,   4],
           [140,  90,  70]], dtype=uint8)
    >>> bytescale(img, high=200, low=100)
    array([[200, 100, 192],
           [180, 188, 102],
           [155, 135, 128]], dtype=uint8)
    >>> bytescale(img, cmin=0, cmax=255)
    array([[91,  3, 84],
           [74, 81,  5],
           [52, 34, 28]], dtype=uint8)
    """
    if data.dtype == np.uint8:
        return data

    if high > 255:
        raise ValueError("`high` should be less than or equal to 255.")
    if low < 0:
        raise ValueError("`low` should be greater than or equal to 0.")
    if high < low:
        raise ValueError("`high` should be greater than or equal to `low`.")

    if cmin is None:
        cmin = data.min()
    if cmax is None:
        cmax = data.max()

    cscale = cmax - cmin
    if cscale < 0:
        raise ValueError("`cmax` should be larger than `cmin`.")
    elif cscale == 0:
        cscale = 1

    scale = float(high - low) / cscale
    bytedata = (data - cmin) * scale + low
    return (bytedata.clip(low, high) + 0.5).astype(np.uint8)


def toimage(arr, high=255, low=0, cmin=None, cmax=None, pal=None,
            mode=None, channel_axis=None):
    """Takes a numpy array and returns a PIL image.
    This function is only available if Python Imaging Library (PIL) is installed.
    The mode of the PIL image depends on the array shape and the `pal` and
    `mode` keywords.
    For 2-D arrays, if `pal` is a valid (N,3) byte-array giving the RGB values
    (from 0 to 255) then ``mode='P'``, otherwise ``mode='L'``, unless mode
    is given as 'F' or 'I' in which case a float and/or integer array is made.
    .. warning::
        This function uses `bytescale` under the hood to rescale images to use
        the full (0, 255) range if ``mode`` is one of ``None, 'L', 'P', 'l'``.
        It will also cast data for 2-D images to ``uint32`` for ``mode=None``
        (which is the default).
    Notes
    -----
    For 3-D arrays, the `channel_axis` argument tells which dimension of the
    array holds the channel data.
    For 3-D arrays if one of the dimensions is 3, the mode is 'RGB'
    by default or 'YCbCr' if selected.
    The numpy array must be either 2 dimensional or 3 dimensional.
    """
    data = np.asarray(arr)
    if np.iscomplexobj(data):
        raise ValueError("Cannot convert a complex-valued array.")
    shape = list(data.shape)
    valid = len(shape) == 2 or ((len(shape) == 3) and
                                ((3 in shape) or (4 in shape)))
    if not valid:
        raise ValueError("'arr' does not have a suitable array shape for "
                         "any mode.")
    if len(shape) == 2:
        shape = (shape[1], shape[0])  # columns show up first
        if mode == 'F':
            data32 = data.astype(np.float32)
            image = Image.frombytes(mode, shape, data32.tostring())
            return image
        if mode in [None, 'L', 'P']:
            bytedata = bytescale(data, high=high, low=low,
                                 cmin=cmin, cmax=cmax)
            image = Image.frombytes('L', shape, bytedata.tostring())
            if pal is not None:
                image.putpalette(np.asarray(pal, dtype=np.uint8).tostring())
                # Becomes a mode='P' automagically.
            elif mode == 'P':  # default gray-scale
                pal = (np.arange(0, 256, 1, dtype=np.uint8)[:, np.newaxis] *
                       np.ones((3,), dtype=np.uint8)[np.newaxis, :])
                image.putpalette(np.asarray(pal, dtype=np.uint8).tostring())
            return image
        if mode == '1':  # high input gives threshold for 1
            bytedata = (data > high)
            image = Image.frombytes('1', shape, bytedata.tostring())
            return image
        if cmin is None:
            cmin = np.amin(np.ravel(data))
        if cmax is None:
            cmax = np.amax(np.ravel(data))
        data = (data*1.0 - cmin)*(high - low)/(cmax - cmin) + low
        if mode == 'I':
            data32 = data.astype(np.uint32)
            image = Image.frombytes(mode, shape, data32.tostring())
        else:
            raise ValueError(_errstr)
        return image

    # if here then 3-d array with a 3 or a 4 in the shape length.
    # Check for 3 in datacube shape --- 'RGB' or 'YCbCr'
    if channel_axis is None:
        if (3 in shape):
            ca = np.flatnonzero(np.asarray(shape) == 3)[0]
        else:
            ca = np.flatnonzero(np.asarray(shape) == 4)
            if len(ca):
                ca = ca[0]
            else:
                raise ValueError("Could not find channel dimension.")
    else:
        ca = channel_axis

    numch = shape[ca]
    if numch not in [3, 4]:
        raise ValueError("Channel axis dimension is not valid.")

    bytedata = bytescale(data, high=high, low=low, cmin=cmin, cmax=cmax)
    if ca == 2:
        strdata = bytedata.tostring()
        shape = (shape[1], shape[0])
    elif ca == 1:
        strdata = np.transpose(bytedata, (0, 2, 1)).tostring()
        shape = (shape[2], shape[0])
    elif ca == 0:
        strdata = np.transpose(bytedata, (1, 2, 0)).tostring()
        shape = (shape[2], shape[1])
    if mode is None:
        if numch == 3:
            mode = 'RGB'
        else:
            mode = 'RGBA'

    if mode not in ['RGB', 'RGBA', 'YCbCr', 'CMYK']:
        raise ValueError(_errstr)

    if mode in ['RGB', 'YCbCr']:
        if numch != 3:
            raise ValueError("Invalid array shape for mode.")
    if mode in ['RGBA', 'CMYK']:
        if numch != 4:
            raise ValueError("Invalid array shape for mode.")

    # Here we know data and mode is correct
    image = Image.frombytes(mode, shape, strdata)
    return image

这可以根据实际使用的参数进一步简化;例如,您的示例代码不使用 pal 参数。

卸载 SciPy 并安装 SciPy v1.2.0

$ pip uninstall scipy

$ pip install scipy==1.2.0

试试 !pip 安装 scipy==1.1.0

这对我有用。

@Martijn Pieters 为我工作,但我也找到了另一种可能更适合某些人的解决方案。您还可以使用下面的代码导入 keras.preprocessing.image、array_to_img 而不是 scipy.misc.toimage,正如@Martijn Pieters 已经提到的那样,scipy.misc.toimage 在 Scipy 1.0.0 中已弃用。

所以作为使用keras API处理转换图像的例子:

# example of converting an image with the Keras API
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
from keras.preprocessing.image import array_to_img

# load the image
img = load_img('image.jpg')
print(type(img))

# convert to numpy array
img_array = img_to_array(img)
print(img_array.dtype)
print(img_array.shape)

# convert back to image
img_pil = array_to_img(img_array)
print(type(img_pil))

# show image
fig = plt.figure()
ax = fig.add_subplot()
ax.imshow(img_pil)

并使用 keras 保存图像:

from keras.preprocessing.image import save_img
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array

# load image
img = load_img('image.jpg')

# convert image to a numpy array
img_array = img_to_array(img)

# save the image with a new filename
save_img('image_save.jpg', img_array)

# load the image to confirm it was saved correctly
img = load_img('image_save.jpg')

print(type(img))
print(img.format)
print(img.mode)
print(img.size)