欧拉-拉格朗日的 Sympy 隐式微分

Sympy implicit differentiation for euler-lagrange

我正在尝试使用 sympy 的 idiff 函数对某些表达式执行隐式微分。

在这种情况下,rdot 是 dr/ds,其中 s 是仿射参数。我想对相同的仿射参数 s 对 LtdotLphidotLrdot 执行隐式微分。

import numpy as np
from sympy import *
from sympy.physics.mechanics import *

#definition of variables
s = dynamicsymbols('s')
r = Function('r')(s)
rdot = Function('rdot')(s)
t = Function('t')(s)
tdot = Function('tdot')(s)
phi = Function('phi')(s)
phidot = Function('phidot')(s)


def F(x):
    return 1-(1/x)


# Largangian
def L(a,b,c, adot, bdot, cdot, photon = true): #r,t,phi
    return F(a)*(bdot)**2 - adot**2/F(a) - (a*cdot)**2


L = L(r, t, phi, rdot, tdot, phidot, photon = True)
Lt = diff(L, t)
Ltdot = diff(L, tdot)
Lphi = diff(L, phi)
Lphidot = diff(L, phidot)
Lr = diff(L, r)
Lrdot = diff(L, rdot)


#E-L equations printed to be used to solve equations
print('d/ds(', Ltdot, ') =', Lt) #EL1
print('d/ds(', Lphidot, ') =', Lphi) #EL2
print('d/ds(', Lrdot, ') =', Lr) #EL3


#FIX THIIISSSSS------------------------------------------------
LHS_EL1 = idiff(Ltdot, [t, tdot], s)
LHS_EL2 = idiff(Lphidot, [phi, phidot], s)
LHS_EL3 = idiff(Lrdot, [r, rdot], s)
#i want to do implicit differentiation wrt to affine parameter s, same that r is differentiated by to make rdot!!


print('d/ds(', LHS_EL1, ') =', Lt) #EL1 finalised
print('d/ds(', LHS_EL2, ') =', Lphi) #EL2 finalised
print('d/ds(', LHS_EL3, ') =', Lr) #EL3 finalised

我收到以下错误消息:

Traceback (most recent call last):
File "/Users/myname/PycharmProjects/untitled/.idea/14.1.py", line 53, in <module>
LHS_EL1 = idiff(Ltdot, [t, tdot], s)
File "/Users/myname/PycharmProjects/untitled/venv/lib/python3.6/site-packages/sympy/geometry/util.py", line 589, in idiff
yp = solve(eq.diff(x), dydx)[0].subs(derivs)
IndexError: list index out of range

任何关于如何实现我想要的想法或任何帮助调试的想法都将不胜感激!

将隐式 't' 作为 s 的 "time" 变量,将 t 作为函数 t(s),这有点令人困惑。当您区分 wrt t 时,您是指 "Function('t')" 还是 "s.args[0]"?如果是后者,那么 if T = s.args[0] then

>>> diff(L, T)
2*(1 - 1/r(s(t)))*tdot(s(t))*Derivative(s(t),
t)*Derivative(tdot(s(t)), s(t)) -
2*phidot(s(t))**2*r(s(t))*Derivative(r(s(t)), s(t))*Derivative(s(t),
t) - 2*phidot(s(t))*r(s(t))**2*Derivative(phidot(s(t)),
s(t))*Derivative(s(t), t) + tdot(s(t))**2*Derivative(r(s(t)),
s(t))*Derivative(s(t), t)/r(s(t))**2 -
2*rdot(s(t))*Derivative(rdot(s(t)), s(t))*Derivative(s(t), t)/(1 -
1/r(s(t))) + rdot(s(t))**2*Derivative(r(s(t)), s(t))*Derivative(s(t),
t)/((1 - 1/r(s(t)))**2*r(s(t))**2)