无法将我的输入序列和 window 大小转换为 RNN 模型的一组 input/output 对

Unable to transform my input series and window-size into a set of input/output pairs for the RNN model

我目前正在构建一个递归神经网络模型,当我将我的输入数据转换为 RNN 模型的 input/output 集时,我目前遇到了困难。

我尝试了 windoe_tranform_series 函数,该函数将序列 window_size 和步长作为输入,但我一直收到 KEYERROR。

将我们的时间序列分割成序列

下面的函数将输入序列和 window 大小转换为我们的 RNN 模型的一组 #of input/output 对。

def window_transform_series(series,window_size,step_size):
    inputs = []
    outputs = []
    ctr = 0
     for i in range(window_size, len(series), step_size):
    inputs.append(series[ctr:i])
    outputs.append(series[i])
    ctr = ctr + step_size
return inputs,outputs

window_size = 7 step_size = 5

inputs, outputs = window_transform_series(carbon_persil,window_size,step_size)



KeyError                                  Traceback (most recent call last)
~\Anaconda3\lib\site-packages\pandas\core\indexes\base.py in get_loc(self, key, method, tolerance)
   2656             try:
-> 2657                 return self._engine.get_loc(key)
   2658             except KeyError:

pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc()

pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc()

pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()

pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()

KeyError: 7

During handling of the above exception, another exception occurred:

KeyError                                  Traceback (most recent call last)
<ipython-input-45-9810d786d8b5> in <module>
      2 window_size = 7
      3 step_size = 5
----> 4 inputs, outputs = window_transform_series(carbon_persil,window_size,step_size)

<ipython-input-41-82e8b484e9e9> in window_transform_series(series, window_size, step_size)
      9     for i in range(window_size, len(series), step_size):
     10         inputs.append(series[ctr:i])
---> 11         outputs.append(series[i])
     12         ctr = ctr + step_size
     13     return inputs,outputs

~\Anaconda3\lib\site-packages\pandas\core\frame.py in __getitem__(self, key)
   2925             if self.columns.nlevels > 1:
   2926                 return self._getitem_multilevel(key)
-> 2927             indexer = self.columns.get_loc(key)
   2928             if is_integer(indexer):
   2929                 indexer = [indexer]

~\Anaconda3\lib\site-packages\pandas\core\indexes\base.py in get_loc(self, key, method, tolerance)
   2657                 return self._engine.get_loc(key)
   2658             except KeyError:
-> 2659                 return self._engine.get_loc(self._maybe_cast_indexer(key))
   2660         indexer = self.get_indexer([key], method=method, tolerance=tolerance)
   2661         if indexer.ndim > 1 or indexer.size > 1:

pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc()

pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc()

pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()

pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()

KeyError: 7


        

您的 series 不够长。请参阅以下示例片段。

import numpy as np
import pandas as pd

data = np.array(['a','b','c','d'])
s = pd.Series(data)  # create dummy series

现在,print (s[2]) 将打印 'c' 作为输出。

但是如果您尝试打印超出范围的内容,它会给出 KeyError.

所以,这里的print (s[5])给出了KeyError: 5。在你的例子中,你用 window_size=7 开始 for 循环,因为你的 series 的长度小于 7,它在行 outputs.append(series[i]) 上给出 KeyError: 7

有趣的是,当您尝试使用超出范围的索引对系列进行切片时,不会发生此错误。

例如如果您尝试在上面的示例中执行 print (s[1:5]),它只会打印以下内容而不是 KeyError.

1    b
2    c
3    d

因此,KeyError 在您的 inputs.append(series[ctr:i]) 行中被绕过。