CNN compiling error : Failed to get convolution algorithm. This is probably because cuDNN failed to initialize,

CNN compiling error : Failed to get convolution algorithm. This is probably because cuDNN failed to initialize,

我只是尝试自己构建 VGG-19 模型,但每次我尝试编译时,错误都会增加,尽管它在 Alexnet 上运行得很清楚。请让我知道问题所在。

设置

CPU:AMD 锐龙 2700x
显卡:RTX 2080
OS : Window 10
CUDA:10.0
Tensorflow 版本:Tensorflow-2.0.0beta1
工作工具:Jupyter 实验室
时间:凌晨 3 点
气候 : 多雨
感觉:阴郁:(

代码

import tensorflow as tf  
from tensorflow import keras  
from tensorflow.keras import layers  
import tensorflow_datasets as tfds  
import matplotlib.pyplot as plt  
from functools import partial  
import skimage.io as io  
import numpy as np  

EPOCH = 5  
BATCH = 32  
Learning_rate = 0.0001  

leaky_relu = partial(keras.activations.relu, alpha=0.1)  

def to_float(image, label) :  
    float_image = image/255  
    return (float_image, label)  

data, info = tfds.load('cifar10',as_supervised=True,with_info=True)  

train, test = data.get('train'), data.get('test')  
train_data = train.map(to_float).shuffle(10000).batch(BATCH).prefetch(3)  
test_data = test.map(to_float).batch(BATCH).prefetch(4)  

sample_batch = next(iter(train_data))[0]  
print(io.imshow_collection(io.concatenate_images(np.array(sample_batch))))  


class VGG19(tf.keras.Model) :  
    def __init__(self) :  
        super(VGG19, self).__init__()  
        self.conv1_1 = layers.Conv2D(filters = 64,  
                                      kernel_size=(3,3),  
                                      strides=(1,1),  
                                      padding='same',  
                                      activation=leaky_relu)  
        self.conv1_2 = layers.Conv2D(filters = 64,  
                                      kernel_size=(3,3),  
                                      strides=(1,1),  
                                      padding='same',  
                                      activation=leaky_relu)  
        self.pool1 = layers.MaxPool2D(pool_size=(2,2),  
                                      strides=(2,2),  
                                      padding='same')  


        self.conv2_1 = layers.Conv2D(filters = 128,  
                                      kernel_size=(3,3),  
                                      strides=(1,1),  
                                      padding='same',  
                                      activation=leaky_relu)  
        self.conv2_2 = layers.Conv2D(filters = 128,  
                                      kernel_size=(3,3),  
                                      strides=(1,1),  
                                      padding='same',  
                                      activation=leaky_relu)  
        self.pool2 = layers.MaxPool2D(pool_size=(2,2),  
                                      strides=(2,2),  
                                      padding='same')  


        self.conv3_1 = layers.Conv2D(filters = 256,  
                                      kernel_size=(3,3),  
                                      strides=(1,1),  
                                      padding='same',  
                                      activation=leaky_relu)  
        self.conv3_2 = layers.Conv2D(filters = 256,  
                                      kernel_size=(3,3),  
                                      strides=(1,1),  
                                      padding='same',  
                                      activation=leaky_relu)  
        self.conv3_3 = layers.Conv2D(filters = 256,  
                                      kernel_size=(3,3),  
                                      strides=(1,1),  
                                      padding='same',  
                                      activation=leaky_relu)  
        self.conv3_4 = layers.Conv2D(filters = 256,  
                                      kernel_size=(3,3),  
                                      strides=(1,1),  
                                      padding='same',  
                                      activation=leaky_relu)  
        self.pool3 = layers.MaxPool2D(pool_size=(2,2),  
                                      strides=(2,2),  
                                      padding='same')  


        self.conv4_1 = layers.Conv2D(filters = 512,
                                      kernel_size=(3,3),
                                      strides=(1,1),
                                      padding='same',
                                      activation=leaky_relu)
        self.conv4_2 = layers.Conv2D(filters = 512,
                                      kernel_size=(3,3),
                                      strides=(1,1),
                                      padding='same',
                                      activation=leaky_relu)
        self.conv4_3 = layers.Conv2D(filters = 512,
                                      kernel_size=(3,3),
                                      strides=(1,1),
                                      padding='same',
                                      activation=leaky_relu)
        self.conv4_4 = layers.Conv2D(filters = 512,
                                      kernel_size=(3,3),
                                      strides=(1,1),
                                      padding='same',
                                      activation=leaky_relu)
        self.pool4 = layers.MaxPool2D(pool_size=(2,2),
                                      strides=(2,2),
                                      padding='same')


        self.conv5_1 = layers.Conv2D(filters = 512,
                                      kernel_size=(3,3),
                                      strides=(1,1),
                                      padding='same',
                                      activation=leaky_relu)
        self.conv5_2 = layers.Conv2D(filters = 512,
                                      kernel_size=(3,3),
                                      strides=(1,1),
                                      padding='same',
                                      activation=leaky_relu)
        self.conv5_3 = layers.Conv2D(filters = 512,
                                      kernel_size=(3,3),
                                      strides=(1,1),
                                      padding='same',
                                      activation=leaky_relu)
        self.conv5_4 = layers.Conv2D(filters = 512,
                                      kernel_size=(3,3),
                                      strides=(1,1),
                                      padding='same',
                                      activation=leaky_relu)
        self.pool5 = layers.MaxPool2D(pool_size=(2,2),
                                      strides=(2,2),
                                      padding='same')


        self.flat6 = layers.Flatten()
        self.fc6 = layers.Dense(units=4096,
                                activation=leaky_relu)
        self.drop6 = layers.Dropout(rate=0.5)


        self.fc7 = layers.Dense(units=4096,
                                activation=leaky_relu)
        self.drop7 = layers.Dropout(rate=0.5)


        self.fc8 = layers.Dense(units=10,
                                activation=tf.keras.activations.softmax)

    def call(self, inputs):
            x = self.conv1_1(inputs)
            x = self.conv1_2(x)
            x = self.pool1(x)

            x = self.conv2_1(x)
            x = self.conv2_2(x)
            x = self.pool2(x)

            x = self.conv3_1(x)
            x = self.conv3_2(x)
            x = self.conv3_3(x)
            x = self.conv3_4(x)
            x = self.pool3(x)

            x = self.conv4_1(x)
            x = self.conv4_2(x)
            x = self.conv4_3(x)
            x = self.conv4_4(x)
            x = self.pool4(x)

            x = self.conv5_1(x)
            x = self.conv5_2(x)
            x = self.conv5_3(x)
            x = self.conv5_4(x)
            x = self.pool5(x)

            x = self.flat6(x)
            x = self.fc6(x)
            x = self.drop6(x)

            x = self.fc7(x)
            x = self.drop7(x)

            output = self.fc8(x)

            return output


VGG19_model = VGG19()

my_loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

VGG19_model.compile(optimizer=tf.keras.optimizers.Adam(Learning_rate),
                loss = my_loss,
                metrics = ['accuracy'],
               )

VGG19_model.fit(train_data, epochs = EPOCH, verbose=2)

错误信息

---------------------------------------------------------------------------
UnknownError                              Traceback (most recent call last)
<ipython-input-21-1e291c11711c> in <module>
      4                )
      5 
----> 6 VGG19_model.fit(train_data, epochs = EPOCH, verbose=2)

~\Anaconda3\envs\cuda\lib\site-packages\tensorflow\python\keras\engine\training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, max_queue_size, workers, use_multiprocessing, **kwargs)
    641         max_queue_size=max_queue_size,
    642         workers=workers,
--> 643         use_multiprocessing=use_multiprocessing)
    644 
    645   def evaluate(self,

~\Anaconda3\envs\cuda\lib\site-packages\tensorflow\python\keras\engine\training_generator.py in fit(self, model, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, **kwargs)
    692         shuffle=shuffle,
    693         initial_epoch=initial_epoch,
--> 694         steps_name='steps_per_epoch')
    695 
    696   def evaluate(self,

~\Anaconda3\envs\cuda\lib\site-packages\tensorflow\python\keras\engine\training_generator.py in model_iteration(model, data, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, validation_freq, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch, mode, batch_size, steps_name, **kwargs)
    262 
    263       is_deferred = not model._is_compiled
--> 264       batch_outs = batch_function(*batch_data)
    265       if not isinstance(batch_outs, list):
    266         batch_outs = [batch_outs]

~\Anaconda3\envs\cuda\lib\site-packages\tensorflow\python\keras\engine\training.py in train_on_batch(self, x, y, sample_weight, class_weight, reset_metrics)
    916       self._update_sample_weight_modes(sample_weights=sample_weights)
    917       self._make_train_function()
--> 918       outputs = self.train_function(ins)  # pylint: disable=not-callable
    919 
    920     if reset_metrics:

~\Anaconda3\envs\cuda\lib\site-packages\tensorflow\python\keras\backend.py in __call__(self, inputs)
   3508         value = math_ops.cast(value, tensor.dtype)
   3509       converted_inputs.append(value)
-> 3510     outputs = self._graph_fn(*converted_inputs)
   3511 
   3512     # EagerTensor.numpy() will often make a copy to ensure memory safety.

~\Anaconda3\envs\cuda\lib\site-packages\tensorflow\python\eager\function.py in __call__(self, *args, **kwargs)
    570       raise TypeError("Keyword arguments {} unknown. Expected {}.".format(
    571           list(kwargs.keys()), list(self._arg_keywords)))
--> 572     return self._call_flat(args)
    573 
    574   def _filtered_call(self, args, kwargs):

~\Anaconda3\envs\cuda\lib\site-packages\tensorflow\python\eager\function.py in _call_flat(self, args)
    669     # Only need to override the gradient in graph mode and when we have outputs.
    670     if context.executing_eagerly() or not self.outputs:
--> 671       outputs = self._inference_function.call(ctx, args)
    672     else:
    673       self._register_gradient()

~\Anaconda3\envs\cuda\lib\site-packages\tensorflow\python\eager\function.py in call(self, ctx, args)
    443             attrs=("executor_type", executor_type,
    444                    "config_proto", config),
--> 445             ctx=ctx)
    446       # Replace empty list with None
    447       outputs = outputs or None

~\Anaconda3\envs\cuda\lib\site-packages\tensorflow\python\eager\execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
     65     else:
     66       message = e.message
---> 67     six.raise_from(core._status_to_exception(e.code, message), None)
     68   except TypeError as e:
     69     if any(ops._is_keras_symbolic_tensor(x) for x in inputs):

~\Anaconda3\envs\cuda\lib\site-packages\six.py in raise_from(value, from_value)

未知错误:发现 2 个根本错误。

(0)未知:无法获取卷积算法。这可能是因为 cuDNN 初始化失败,所以尝试查看上面是否打印了警告日志消息。
[[节点 vg_g19_2/conv2d_32/Conv2D(定义于 :6)]]
[[Func/Adam/gradients_2/vg_g19_2/dropout_5/cond_grad/If/then/_22/input/_75/_64]]

(1)未知:获取卷积算法失败。这可能是因为 cuDNN 初始化失败,所以尝试查看上面是否打印了警告日志消息。
[[节点 vg_g19_2/conv2d_32/Conv2D(定义于 :6)]]
0 次成功操作。
忽略 0 个派生错误。 [操作:__inference_keras_scratch_graph_10115]

函数调用堆栈:
keras_scratch_graph -> keras_scratch_graph

首先要检查是否正确安装了兼容的 CUDA、cuDNN 驱动程序。然后您可以通过允许 gpu 内存增长来尝试 gpu 内存资源管理。

allow_growth 选项,尝试根据 运行 时间分配仅分配尽可能多的 GPU 内存:它开始分配非常少的内存,并且随着会话数 运行 并且需要更多 GPU 内存,它扩展了 TensorFlow 进程所需的 GPU 内存区域。

要了解更多信息,请参阅 https://www.tensorflow.org/guide/using_gpu#allowing_gpu_memory_growth
您可以尝试允许 GPU 内存增长:

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)