如何在OpenCV中检测数独网格板
How to detect Sudoku grid board in OpenCV
我正在使用 python 中的 opencv
进行个人项目。想要检测数独网格。
原图为:
到目前为止我已经创建了这个:
然后试图select一个大斑点。结果可能与此类似:
结果我得到一张黑色图像:
密码是:
import cv2
import numpy as np
def find_biggest_blob(outerBox):
max = -1
maxPt = (0, 0)
h, w = outerBox.shape[:2]
mask = np.zeros((h + 2, w + 2), np.uint8)
for y in range(0, h):
for x in range(0, w):
if outerBox[y, x] >= 128:
area = cv2.floodFill(outerBox, mask, (x, y), (0, 0, 64))
#cv2.floodFill(outerBox, mask, maxPt, (255, 255, 255))
image_path = 'Images/Results/sudoku-find-biggest-blob.jpg'
cv2.imwrite(image_path, outerBox)
cv2.imshow(image_path, outerBox)
def main():
image = cv2.imread('Images/Test/sudoku-grid-detection.jpg', 0)
find_biggest_blob(image)
cv2.waitKey(0)
cv2.destroyAllWindows()
if __name__ == '__main__':
main()
repl中的代码是:https://repl.it/@gmunumel/SudokuSolver
有什么想法吗?
这是一个方法:
- 将图像转换为灰度并将中值模糊转换为平滑图像
- 自适应阈值获取二值图像
- 查找轮廓并过滤最大轮廓
- 执行透视变换以获得俯视图
转换为灰度和中值模糊后,我们自适应阈值得到二值图像
接下来我们找到轮廓并使用轮廓区域进行过滤。这是检测到的板
现在要获得图像的俯视图,我们执行透视变换。这是结果
import cv2
import numpy as np
def perspective_transform(image, corners):
def order_corner_points(corners):
# Separate corners into individual points
# Index 0 - top-right
# 1 - top-left
# 2 - bottom-left
# 3 - bottom-right
corners = [(corner[0][0], corner[0][1]) for corner in corners]
top_r, top_l, bottom_l, bottom_r = corners[0], corners[1], corners[2], corners[3]
return (top_l, top_r, bottom_r, bottom_l)
# Order points in clockwise order
ordered_corners = order_corner_points(corners)
top_l, top_r, bottom_r, bottom_l = ordered_corners
# Determine width of new image which is the max distance between
# (bottom right and bottom left) or (top right and top left) x-coordinates
width_A = np.sqrt(((bottom_r[0] - bottom_l[0]) ** 2) + ((bottom_r[1] - bottom_l[1]) ** 2))
width_B = np.sqrt(((top_r[0] - top_l[0]) ** 2) + ((top_r[1] - top_l[1]) ** 2))
width = max(int(width_A), int(width_B))
# Determine height of new image which is the max distance between
# (top right and bottom right) or (top left and bottom left) y-coordinates
height_A = np.sqrt(((top_r[0] - bottom_r[0]) ** 2) + ((top_r[1] - bottom_r[1]) ** 2))
height_B = np.sqrt(((top_l[0] - bottom_l[0]) ** 2) + ((top_l[1] - bottom_l[1]) ** 2))
height = max(int(height_A), int(height_B))
# Construct new points to obtain top-down view of image in
# top_r, top_l, bottom_l, bottom_r order
dimensions = np.array([[0, 0], [width - 1, 0], [width - 1, height - 1],
[0, height - 1]], dtype = "float32")
# Convert to Numpy format
ordered_corners = np.array(ordered_corners, dtype="float32")
# Find perspective transform matrix
matrix = cv2.getPerspectiveTransform(ordered_corners, dimensions)
# Return the transformed image
return cv2.warpPerspective(image, matrix, (width, height))
image = cv2.imread('1.jpg')
original = image.copy()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.medianBlur(gray, 3)
thresh = cv2.adaptiveThreshold(blur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV,11,3)
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.015 * peri, True)
transformed = perspective_transform(original, approx)
break
cv2.imshow('transformed', transformed)
cv2.imwrite('board.png', transformed)
cv2.waitKey()
这是我的解决方案,可以推广到任何图像,无论它是否变形。
- 将图像转换为灰度
- 应用自适应阈值将图像转换为二进制
(自适应阈值比普通阈值效果更好,因为原始图像在不同区域可以有不同的光照)
- 确定大正方形的角
- 图像到最终方形图像的透视变换
根据原始图像的偏斜程度,识别出的角点可能是乱序的,我们是否需要按正确的顺序排列它们。这里使用的方法是确定大正方形的质心并从那里确定角的顺序
代码如下:
import cv2
import numpy as np
# Helper functions for getting square image
def euclidian_distance(point1, point2):
# Calcuates the euclidian distance between the point1 and point2
#used to calculate the length of the four sides of the square
distance = np.sqrt((point1[0] - point2[0]) ** 2 + (point1[1] - point2[1]) ** 2)
return distance
def order_corner_points(corners):
# The points obtained from contours may not be in order because of the skewness of the image, or
# because of the camera angle. This function returns a list of corners in the right order
sort_corners = [(corner[0][0], corner[0][1]) for corner in corners]
sort_corners = [list(ele) for ele in sort_corners]
x, y = [], []
for i in range(len(sort_corners[:])):
x.append(sort_corners[i][0])
y.append(sort_corners[i][1])
centroid = [sum(x) / len(x), sum(y) / len(y)]
for _, item in enumerate(sort_corners):
if item[0] < centroid[0]:
if item[1] < centroid[1]:
top_left = item
else:
bottom_left = item
elif item[0] > centroid[0]:
if item[1] < centroid[1]:
top_right = item
else:
bottom_right = item
ordered_corners = [top_left, top_right, bottom_right, bottom_left]
return np.array(ordered_corners, dtype="float32")
def image_preprocessing(image, corners):
# This function undertakes all the preprocessing of the image and return
ordered_corners = order_corner_points(corners)
print("ordered corners: ", ordered_corners)
top_left, top_right, bottom_right, bottom_left = ordered_corners
# Determine the widths and heights ( Top and bottom ) of the image and find the max of them for transform
width1 = euclidian_distance(bottom_right, bottom_left)
width2 = euclidian_distance(top_right, top_left)
height1 = euclidian_distance(top_right, bottom_right)
height2 = euclidian_distance(top_left, bottom_right)
width = max(int(width1), int(width2))
height = max(int(height1), int(height2))
# To find the matrix for warp perspective function we need dimensions and matrix parameters
dimensions = np.array([[0, 0], [width, 0], [width, width],
[0, width]], dtype="float32")
matrix = cv2.getPerspectiveTransform(ordered_corners, dimensions)
# Return the transformed image
transformed_image = cv2.warpPerspective(image, matrix, (width, width))
#Now, chances are, you may want to return your image into a specific size. If not, you may ignore the following line
transformed_image = cv2.resize(transformed_image, (252, 252), interpolation=cv2.INTER_AREA)
return transformed_image
# main function
def get_square_box_from_image(image):
# This function returns the top-down view of the puzzle in grayscale.
#
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.medianBlur(gray, 3)
adaptive_threshold = cv2.adaptiveThreshold(blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, 3)
corners = cv2.findContours(adaptive_threshold, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
corners = corners[0] if len(corners) == 2 else corners[1]
corners = sorted(corners, key=cv2.contourArea, reverse=True)
for corner in corners:
length = cv2.arcLength(corner, True)
approx = cv2.approxPolyDP(corner, 0.015 * length, True)
print(approx)
puzzle_image = image_preprocessing(image, approx)
break
return puzzle_image
# Call the get_square_box_from_image method on any sudoku image to get the top view of the puzzle
original = cv2.imread("large_puzzle.jpg")
sudoku = get_square_box_from_image(original)
这是给定图像和自定义示例的结果
我正在使用 python 中的 opencv
进行个人项目。想要检测数独网格。
原图为:
到目前为止我已经创建了这个:
然后试图select一个大斑点。结果可能与此类似:
结果我得到一张黑色图像:
密码是:
import cv2
import numpy as np
def find_biggest_blob(outerBox):
max = -1
maxPt = (0, 0)
h, w = outerBox.shape[:2]
mask = np.zeros((h + 2, w + 2), np.uint8)
for y in range(0, h):
for x in range(0, w):
if outerBox[y, x] >= 128:
area = cv2.floodFill(outerBox, mask, (x, y), (0, 0, 64))
#cv2.floodFill(outerBox, mask, maxPt, (255, 255, 255))
image_path = 'Images/Results/sudoku-find-biggest-blob.jpg'
cv2.imwrite(image_path, outerBox)
cv2.imshow(image_path, outerBox)
def main():
image = cv2.imread('Images/Test/sudoku-grid-detection.jpg', 0)
find_biggest_blob(image)
cv2.waitKey(0)
cv2.destroyAllWindows()
if __name__ == '__main__':
main()
repl中的代码是:https://repl.it/@gmunumel/SudokuSolver
有什么想法吗?
这是一个方法:
- 将图像转换为灰度并将中值模糊转换为平滑图像
- 自适应阈值获取二值图像
- 查找轮廓并过滤最大轮廓
- 执行透视变换以获得俯视图
转换为灰度和中值模糊后,我们自适应阈值得到二值图像
接下来我们找到轮廓并使用轮廓区域进行过滤。这是检测到的板
现在要获得图像的俯视图,我们执行透视变换。这是结果
import cv2
import numpy as np
def perspective_transform(image, corners):
def order_corner_points(corners):
# Separate corners into individual points
# Index 0 - top-right
# 1 - top-left
# 2 - bottom-left
# 3 - bottom-right
corners = [(corner[0][0], corner[0][1]) for corner in corners]
top_r, top_l, bottom_l, bottom_r = corners[0], corners[1], corners[2], corners[3]
return (top_l, top_r, bottom_r, bottom_l)
# Order points in clockwise order
ordered_corners = order_corner_points(corners)
top_l, top_r, bottom_r, bottom_l = ordered_corners
# Determine width of new image which is the max distance between
# (bottom right and bottom left) or (top right and top left) x-coordinates
width_A = np.sqrt(((bottom_r[0] - bottom_l[0]) ** 2) + ((bottom_r[1] - bottom_l[1]) ** 2))
width_B = np.sqrt(((top_r[0] - top_l[0]) ** 2) + ((top_r[1] - top_l[1]) ** 2))
width = max(int(width_A), int(width_B))
# Determine height of new image which is the max distance between
# (top right and bottom right) or (top left and bottom left) y-coordinates
height_A = np.sqrt(((top_r[0] - bottom_r[0]) ** 2) + ((top_r[1] - bottom_r[1]) ** 2))
height_B = np.sqrt(((top_l[0] - bottom_l[0]) ** 2) + ((top_l[1] - bottom_l[1]) ** 2))
height = max(int(height_A), int(height_B))
# Construct new points to obtain top-down view of image in
# top_r, top_l, bottom_l, bottom_r order
dimensions = np.array([[0, 0], [width - 1, 0], [width - 1, height - 1],
[0, height - 1]], dtype = "float32")
# Convert to Numpy format
ordered_corners = np.array(ordered_corners, dtype="float32")
# Find perspective transform matrix
matrix = cv2.getPerspectiveTransform(ordered_corners, dimensions)
# Return the transformed image
return cv2.warpPerspective(image, matrix, (width, height))
image = cv2.imread('1.jpg')
original = image.copy()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.medianBlur(gray, 3)
thresh = cv2.adaptiveThreshold(blur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV,11,3)
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.015 * peri, True)
transformed = perspective_transform(original, approx)
break
cv2.imshow('transformed', transformed)
cv2.imwrite('board.png', transformed)
cv2.waitKey()
这是我的解决方案,可以推广到任何图像,无论它是否变形。
- 将图像转换为灰度
- 应用自适应阈值将图像转换为二进制 (自适应阈值比普通阈值效果更好,因为原始图像在不同区域可以有不同的光照)
- 确定大正方形的角
- 图像到最终方形图像的透视变换
根据原始图像的偏斜程度,识别出的角点可能是乱序的,我们是否需要按正确的顺序排列它们。这里使用的方法是确定大正方形的质心并从那里确定角的顺序
代码如下:
import cv2
import numpy as np
# Helper functions for getting square image
def euclidian_distance(point1, point2):
# Calcuates the euclidian distance between the point1 and point2
#used to calculate the length of the four sides of the square
distance = np.sqrt((point1[0] - point2[0]) ** 2 + (point1[1] - point2[1]) ** 2)
return distance
def order_corner_points(corners):
# The points obtained from contours may not be in order because of the skewness of the image, or
# because of the camera angle. This function returns a list of corners in the right order
sort_corners = [(corner[0][0], corner[0][1]) for corner in corners]
sort_corners = [list(ele) for ele in sort_corners]
x, y = [], []
for i in range(len(sort_corners[:])):
x.append(sort_corners[i][0])
y.append(sort_corners[i][1])
centroid = [sum(x) / len(x), sum(y) / len(y)]
for _, item in enumerate(sort_corners):
if item[0] < centroid[0]:
if item[1] < centroid[1]:
top_left = item
else:
bottom_left = item
elif item[0] > centroid[0]:
if item[1] < centroid[1]:
top_right = item
else:
bottom_right = item
ordered_corners = [top_left, top_right, bottom_right, bottom_left]
return np.array(ordered_corners, dtype="float32")
def image_preprocessing(image, corners):
# This function undertakes all the preprocessing of the image and return
ordered_corners = order_corner_points(corners)
print("ordered corners: ", ordered_corners)
top_left, top_right, bottom_right, bottom_left = ordered_corners
# Determine the widths and heights ( Top and bottom ) of the image and find the max of them for transform
width1 = euclidian_distance(bottom_right, bottom_left)
width2 = euclidian_distance(top_right, top_left)
height1 = euclidian_distance(top_right, bottom_right)
height2 = euclidian_distance(top_left, bottom_right)
width = max(int(width1), int(width2))
height = max(int(height1), int(height2))
# To find the matrix for warp perspective function we need dimensions and matrix parameters
dimensions = np.array([[0, 0], [width, 0], [width, width],
[0, width]], dtype="float32")
matrix = cv2.getPerspectiveTransform(ordered_corners, dimensions)
# Return the transformed image
transformed_image = cv2.warpPerspective(image, matrix, (width, width))
#Now, chances are, you may want to return your image into a specific size. If not, you may ignore the following line
transformed_image = cv2.resize(transformed_image, (252, 252), interpolation=cv2.INTER_AREA)
return transformed_image
# main function
def get_square_box_from_image(image):
# This function returns the top-down view of the puzzle in grayscale.
#
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.medianBlur(gray, 3)
adaptive_threshold = cv2.adaptiveThreshold(blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, 3)
corners = cv2.findContours(adaptive_threshold, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
corners = corners[0] if len(corners) == 2 else corners[1]
corners = sorted(corners, key=cv2.contourArea, reverse=True)
for corner in corners:
length = cv2.arcLength(corner, True)
approx = cv2.approxPolyDP(corner, 0.015 * length, True)
print(approx)
puzzle_image = image_preprocessing(image, approx)
break
return puzzle_image
# Call the get_square_box_from_image method on any sudoku image to get the top view of the puzzle
original = cv2.imread("large_puzzle.jpg")
sudoku = get_square_box_from_image(original)
这是给定图像和自定义示例的结果