为什么要在检测文本之前重塑 MSER 轮廓?
Why to reshape MSER contours before detecting texts?
我正在使用来自 opencv-python 的 MSER 来检测使用此 Whosebug question 中的代码的文本。谁能帮我理解为什么在计算对象的凸包之前将轮廓 p 重塑为 (-1, 1, 2)?
代码如下:
import cv2
import numpy as np
#Create MSER object
mser = cv2.MSER_create()
#Your image path i-e receipt path
img = cv2.imread('/home/rafiullah/PycharmProjects/python-ocr-master/receipts/73.jpg')
#Convert to gray scale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
vis = img.copy()
#detect regions in gray scale image
regions, _ = mser.detectRegions(gray)
hulls = [cv2.convexHull(p.reshape(-1, 1, 2)) for p in regions]
cv2.polylines(vis, hulls, 1, (0, 255, 0))
cv2.imshow('img', vis)
cv2.waitKey(0)
mask = np.zeros((img.shape[0], img.shape[1], 1), dtype=np.uint8)
for contour in hulls:
cv2.drawContours(mask, [contour], -1, (255, 255, 255), -1)
#this is used to find only text regions, remaining are ignored
text_only = cv2.bitwise_and(img, img, mask=mask)
cv2.imshow("text only", text_only)
cv2.waitKey(0)
整形不整形无所谓
整形是不必要的。 cv2.convexHull()
可以采用任一输入格式。下图显示 regions
中的 contours
整形与否,结果都是一样的。
hulls = [cv2.convexHull(p.reshape(-1, 1, 2)) for p in regions]
hulls1 = [cv2.convexHull(p) for p in regions]
这是 p
轮廓在重塑后的变化:
>>> p
array([[305, 382],
[306, 382],
[308, 380],
[309, 380]...
>>> p.reshape(-1, 1, 2)
array([[[305, 382]],
[[306, 382]],
[[308, 380]],
[[309, 380]]...
我正在使用来自 opencv-python 的 MSER 来检测使用此 Whosebug question 中的代码的文本。谁能帮我理解为什么在计算对象的凸包之前将轮廓 p 重塑为 (-1, 1, 2)?
代码如下:
import cv2
import numpy as np
#Create MSER object
mser = cv2.MSER_create()
#Your image path i-e receipt path
img = cv2.imread('/home/rafiullah/PycharmProjects/python-ocr-master/receipts/73.jpg')
#Convert to gray scale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
vis = img.copy()
#detect regions in gray scale image
regions, _ = mser.detectRegions(gray)
hulls = [cv2.convexHull(p.reshape(-1, 1, 2)) for p in regions]
cv2.polylines(vis, hulls, 1, (0, 255, 0))
cv2.imshow('img', vis)
cv2.waitKey(0)
mask = np.zeros((img.shape[0], img.shape[1], 1), dtype=np.uint8)
for contour in hulls:
cv2.drawContours(mask, [contour], -1, (255, 255, 255), -1)
#this is used to find only text regions, remaining are ignored
text_only = cv2.bitwise_and(img, img, mask=mask)
cv2.imshow("text only", text_only)
cv2.waitKey(0)
整形不整形无所谓
整形是不必要的。 cv2.convexHull()
可以采用任一输入格式。下图显示 regions
中的 contours
整形与否,结果都是一样的。
hulls = [cv2.convexHull(p.reshape(-1, 1, 2)) for p in regions]
hulls1 = [cv2.convexHull(p) for p in regions]
这是 p
轮廓在重塑后的变化:
>>> p
array([[305, 382],
[306, 382],
[308, 380],
[309, 380]...
>>> p.reshape(-1, 1, 2)
array([[[305, 382]],
[[306, 382]],
[[308, 380]],
[[309, 380]]...