具有混合 nested/non-nested 过滤器的嵌套对象聚合术语

Nested object aggregation term with mixed nested/non-nested filter

我们有分面显示单击过滤器(并组合它们)时将显示的结果数量。像这样:

在我们介绍嵌套对象之前,以下内容可以完成这项工作:

GET /x_v1/_search/
{
  "size": 0,
  "aggs": {
    "FilteredDescriptiveFeatures": {
      "filter": {
        "bool": {
          "must": [
            {
              "terms": {
                "breadcrumbs.categoryIds": [
                  "category"
                ]
              }
            },
            {
              "terms": {
                "products.sterile": [
                  "0"
                ]
              }
            }
          ]
        }
      },
      "aggs": {
        "DescriptiveFeatures": {
          "terms": {
            "field": "products.descriptiveFeatures",
            "size": 1000
          }
        }
      }
    }
  }
}

这给出了结果:

  "aggregations": {
    "FilteredDescriptiveFeatures": {
      "doc_count": 280,
      "DescriptiveFeatures": {
        "doc_count_error_upper_bound": 0,
        "sum_other_doc_count": 0,
        "buckets": [
          {
            "key": "somekey",
            "doc_count": 42
          },

虽然我们需要使 products 成为一个嵌套对象,但我目前正在尝试重写上面的内容以适应这一变化。 我的尝试如下所示。虽然它没有给出正确的结果,而且似乎没有正确连接到过滤器。

GET /x_v2/_search/
{
  "size": 0,
  "aggs": {
    "FilteredDescriptiveFeatures": {
      "filter": {
        "bool": {
          "must": [
            {
              "terms": {
                "breadcrumbs.categoryIds": [
                  "category"
                ]
              }
            },
            {
              "nested": {
                "path": "products",
                "query": {
                  "terms": {
                    "products.sterile": [
                      "0"
                    ]
                  }
                }
              }
            }
          ]
        }
      },
      "aggs": {
        "nested": {
          "nested": {
            "path": "products"
          },
          "aggregations": {
            "DescriptiveFeatures": {
              "terms": {
                "field": "products.descriptiveFeatures",
                "size": 1000
              }
            }
          }
        }
      }
    }
  }
}

这给出了结果:

  "aggregations": {
    "FilteredDescriptiveFeatures": {
      "doc_count": 280,
      "nested": {
        "doc_count": 1437,
        "DescriptiveFeatures": {
          "doc_count_error_upper_bound": 0,
          "sum_other_doc_count": 0,
          "buckets": [
            {
              "key": "somekey",
              "doc_count": 164
            },

我还尝试将嵌套定义放在更高的位置以同时包含过滤器和聚合,但是不在嵌套对象中的过滤器术语 breadcrumbs.categoryId 将不起作用。

我正在尝试做的事情是否可行? 以及如何解决?

我从描述中了解到,您想根据一些嵌套和非嵌套字段过滤结果,然后在嵌套字段上应用聚合。我使用一些嵌套和非嵌套字段创建了一个示例索引和数据,并创建了一个查询

映射

    PUT stack-557722203
    {
      "mappings": {
        "_doc": {
          "properties": {
            "category": {
              "type": "text",
              "fields": {
                "keyword": {
                  "type": "keyword",
                  "ignore_above": 256
                }
              }
            },
            "user": {
              "type": "nested",       // NESTED FIELD
              "properties": {
                "fName": {
                  "type": "text",
                  "fields": {
                    "keyword": {
                      "type": "keyword",
                      "ignore_above": 256
                    }
                  }
                },
                "lName": {
                  "type": "text",
                  "fields": {
                    "keyword": {
                      "type": "keyword",
                      "ignore_above": 256
                    }
                  }
                },
                "type": {
                  "type": "text",
                  "fields": {
                    "keyword": {
                      "type": "keyword",
                      "ignore_above": 256
                    }
                  }
                }
              }
            }
          }
        }
      }
    }

示例数据

    POST _bulk
    {"index":{"_index":"stack-557722203","_id":"1","_type":"_doc"}}
    {"category":"X","user":[{"fName":"A","lName":"B","type":"X"},{"fName":"A","lName":"C","type":"X"},{"fName":"P","lName":"B","type":"Y"}]}
    {"index":{"_index":"stack-557722203","_id":"2","_type":"_doc"}}
    {"category":"X","user":[{"fName":"P","lName":"C","type":"Z"}]}
    {"index":{"_index":"stack-557722203","_id":"3","_type":"_doc"}}
    {"category":"X","user":[{"fName":"A","lName":"C","type":"Y"}]}
    {"index":{"_index":"stack-557722203","_id":"4","_type":"_doc"}}
    {"category":"Y","user":[{"fName":"A","lName":"C","type":"Y"}]}

查询

GET stack-557722203/_search
{
   "size": 0, 
   "query": {
    "bool": {
      "must": [
        {
          "nested": {
            "path": "user",
            "query": {
              "term": {
                "user.fName.keyword": {
                  "value": "A"
                }
              }
            }
          }
        },
        {
          "term": {
            "category.keyword": {
              "value": "X"
            }
          }
        }
      ]
    }
  },

  "aggs": {
    "group BylName": {
      "nested": {
        "path": "user"
      },
      "aggs": {
        "group By lName": {
         "terms": {
           "field": "user.lName.keyword",
           "size": 10
         },
         "aggs": {
           "reverse Nested": {
             "reverse_nested": {}    // NOTE THIS
           }
         }
        }
      }
    }
  }
}

输出

{
  "took": 18,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "group BylName": {
      "doc_count": 4,
      "group By lName": {
        "doc_count_error_upper_bound": 0,
        "sum_other_doc_count": 0,
        "buckets": [
          {
            "key": "B",
            "doc_count": 2,
            "reverse Nested": {
              "doc_count": 1
            }
          },
          {
            "key": "C",
            "doc_count": 2,
            "reverse Nested": {
              "doc_count": 2
            }
          }
        ]
      }
    }
  }
}

根据您获得的数据差异,当您将映射更改为 Nested 时,doc_count 中的更多文档是因为 NestedObject(NonNested) 的方式] 文档被存储。请参阅 here to understand how are they internally stored. In order to connect them back to the root Document , you can use Reverse Nested 聚合,然后您将得到相同的结果。

希望对您有所帮助!!

在您的 FilteredDescriptiveFeatures 步骤中,您 return 所有包含一个产品 sterile = 0

的文档

但在 nested step 之后您不再指定此过滤器。因此,在此步骤中所有嵌套产品都是 return,因此您对所有产品进行术语聚合,而不仅仅是具有 sterile = 0

的产品

您应该在嵌套步骤中移动除菌过滤器。就像 Richa 指出的那样,您需要在最后一步使用 reverse_nested 聚合来计算 elasticsearch 文档而不是嵌套的产品子文档。

你能试试这个查询吗?

{
    "size": 0,
    "aggs": {
        "filteredCategory": {
            "filter": {
                "terms": {
                    "breadcrumbs.categoryIds": [
                        "category"
                    ]
                }
            },
            "aggs": {
                "nestedProducts": {
                    "nested": {
                        "path": "products"
                    },
                    "aggs": {
                        "filteredByProductsAttributes": {
                            "filter": {
                                "terms": {
                                    "products.sterile": [
                                        "0"
                                    ]
                                }
                            },
                            "aggs": {
                                "DescriptiveFeatures": {
                                    "terms": {
                                        "field": "products.descriptiveFeatures",
                                        "size": 1000
                                    },
                                    "aggs": {
                                        "productCount": {
                                            "reverse_nested": {}
                                        }
                                    }
                                }
                            }
                        }
                    }
                }
            }
        }
    }
}