Scala Spark:如何将生成的方法列表添加到函数

Scala Spark: how to add list of generated methods to a function

我正在使用 Amazon deequ 生成测试用例,这些用例 returns 遵循我想在进一步功能中使用的方法列表,而不是单独编码。

var rows = suggestionDataFrame.select("_3").collect().map(_.getString(0)).mkString(" ")
// var rows = suggestionDataFrame.select("_3").collect.map { row => row.toString() .mkString("")} 

返回的行低于方法列表

.hasCompleteness("Id", _ >= 0.95, Some("It should be above 0.95!")) .isNonNegative("Id") 
.isComplete("LastModifiedDate")

在下一个函数中,我想在下面传递这些值,例如

 val verificationResult: VerificationResult = {
      VerificationSuite()
        .onData(datasource)
        .addCheck(
          Check(CheckLevel.Error, "Data Validation Check")
             //this is how i want to pass
            .hasCompleteness("Id", _ >= 0.95, Some("It should be above 0.95!"))
            .isNonNegative("Id")
            .isComplete("LastModifiedDate"))
          .run()
    }

当我像下面这样直接传递行时,它会抛出错误

 val verificationResult: VerificationResult = {
      VerificationSuite()
        .onData(datasource)
        .addCheck(
          Check(CheckLevel.Error, "Data Validation Check")
           rows).run() //throwing error here
    }

有什么办法吗??

参考:https://aws.amazon.com/blogs/big-data/test-data-quality-at-scale-with-deequ/

这是我目前尝试过的方法

package com.myorg.dataquality

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.SparkSession
import com.amazon.deequ.suggestions.{ ConstraintSuggestionRunner, Rules }
import com.amazon.deequ.{ VerificationSuite, VerificationResult }
import com.amazon.deequ.VerificationResult.checkResultsAsDataFrame
import com.amazon.deequ.checks.{ Check, CheckLevel }
import scala.collection.mutable.ArrayBuffer

object DataVerification2 {
  def main(args: Array[String]) {

    val spark = SparkSession.builder.appName("Sample")
      .master("local")
      .getOrCreate()

    val datasource = spark.read.format("jdbc").option("url", "jdbc:sqlserver://host:1433;database=mydb").option("driver", "com.microsoft.sqlserver.jdbc.SQLServerDriver").option("dbtable", "dbo.table").option("user", "myuser").option("password", "password").option("useSSL", "false").load()
    datasource.printSchema()

    val datadestination = spark.read.format("jdbc").option("url", "jdbc:sqlserver://host:1433;database=mydb").option("driver", "com.microsoft.sqlserver.jdbc.SQLServerDriver").option("dbtable", "dbo.table").option("user", "myuser").option("password", "password").option("useSSL", "false").load()
    //datapond.printSchema()

    import spark.implicits._
    //Compute constraint suggestions for us on the data
    val suggestionResult = {
      ConstraintSuggestionRunner()
        // data to suggest constraints for
        .onData(datasource)
        // default set of rules for constraint suggestion
        .addConstraintRules(Rules.DEFAULT)
        // run data profiling and constraint suggestion
        .run()
    }

    // We can now investigate the constraints that Deequ suggested.
    val suggestionDataFrame = suggestionResult.constraintSuggestions.flatMap {
      case (column, suggestions) =>
        suggestions.map { constraint =>
          (column, constraint.description, constraint.codeForConstraint)
        }
    }.toSeq.toDS()

    suggestionDataFrame.toJSON.collect.foreach(println)

    var rows = suggestionDataFrame.select("_3").collect().map(_.getString(0)).mkString(" ")
    // var rows = suggestionDataFrame.select("_3").collect.map { row => row.toString() .mkString("")}
    // var rows = suggestionDataFrame.select("_3").collect().map(t => println(t))
    // var rows = suggestionDataFrame.select("_3").collect.map(_.toSeq)

    var checks = Array[Check]()
    var checkLevel = "Check(CheckLevel.Error)"
    var finalcheck = checkLevel.concat(rows)

    checks :+ finalcheck

    // I am expecting validation result but this is returning me empty result
    val verificationResult: VerificationResult = {
      VerificationSuite().onData(datadestination).addChecks(checks).run()

    }

    val resultDataFrame = checkResultsAsDataFrame(spark, verificationResult)
    resultDataFrame.show()
    resultDataFrame.filter(resultDataFrame("constraint_status") === "Failure").toJSON.collect.foreach(println)

  }
}

这将返回一个空结果:

+-----+-----------+------------+----------+-----------------+------------------+
|check|check_level|check_status|constraint|constraint_status|constraint_message|
+-----+-----------+------------+----------+-----------------+------------------+
+-----+-----------+------------+----------+-----------------+------------------+

看来我没有在数组中添加元素或以错误的方式实现它,正在寻找一些关于此的建议。

更新 1:

我试过使用下面的代码,但是它抛出错误:

val constraints = suggestionResult.constraintSuggestions.flatMap {
      case (column, suggestions) =>
        suggestions.map { constraint =>
          (constraint.codeForConstraint)
        }
    }

   val generatedCheck  =  Check(CheckLevel.Warning, "generated constraints", constraints)
    val verificationResult = VerificationSuite()
      .onData(datadestination)
      .addChecks(generatedCheck)
      .run()

错误:

type mismatch; found : scala.collection.immutable.Iterable[String] required: Seq[com.amazon.deequ.constraints.Constraint]

更新二:

    var rows = suggestionDataFrame.select("_3").collect.map(_.toSeq)
    var checks: Seq[Check] = Seq()
    checks :+ rows

   val generatedCheck  =  Check(CheckLevel.Warning, "generated constraints", checks)
   val verificationResult = VerificationSuite()
      .onData(datadestination)
      .addChecks(generatedCheck)
      .run()

错误:

type mismatch; found : Seq[com.amazon.deequ.checks.Check] required: Seq[com.amazon.deequ.constraints.Constraint]

如果我正确理解你的问题,那么你想将建议的约束添加到你的验证中 运行。这是 deequ 中的代码片段的 link,它执行类似的操作:

https://github.com/awslabs/deequ/blob/master/src/main/scala/com/amazon/deequ/suggestions/ConstraintSuggestionRunner.scala#L294

我希望这可以作为您如何继续的模板。您需要从约束建议(而不是数据框)中收集约束并根据它们创建检查。

更新 1:

我们实际上提供了带有建议结果的约束方法,如果您按如下方式替换上面的行,您的代码应该可以工作:

 val allConstraints = suggestionResult.constraintSuggestions
      .flatMap { case (_, suggestions) => suggestions.map { _.constraint }}
      .toSeq

    val generatedCheck = Check(CheckLevel.Error, "generated constraints", allConstraints)

    val verificationResult = VerificationSuite()
      .onData(datasource)
      .addChecks(Seq(generatedCheck))
      .run()