如何根据 pandas 数据框中的频率创建词云
How to create a wordcloud according to frequencies in a pandas dataframe
我要画一个词云。 'tweets.csv' 是一个 Pandas 数据框,它有一个名为 'text' 的列。绘制的图表并不是基于最常见的词,艰难。单词大小如何与它们在数据框中的频率相关联?
text = df_final.text.values
wordcloud = WordCloud(
#mask = logomask,
max_words = 1000,
width = 600,
height = 400,
#max_font_size = 1000,
#min_font_size = 100,
normalize_plurals = True,
#scale = 5,
#relative_scaling = 0,
background_color = 'black',
stopwords = STOPWORDS.union(stopwords)
).generate(str(text))
fig = plt.figure(
figsize = (50,40),
facecolor = 'k',
edgecolor = 'k')
plt.imshow(wordcloud, interpolation = 'bilinear')
plt.axis('off')
plt.tight_layout(pad=0)
plt.show()
我的数据框如下所示:
0 RT @Pontifex_pt: Temos que descobrir as riquezezas ...
1 RT @Pontifex_pt: Todos estamos em viagem rumo ...
2 RT @Pontifex_pt: Unamos as forças, em todos ...
3 RT @GeneralMourao: #Segurançapública, preocupa ...
4 RT @FIFAcom: The Brasileirao U-17 final provided ...
设置示例 DataFrame:
- 另见 DataCamp: Generating WordClouds in Python
- 软件包文档位于 WordCloud for Python documentation, GitHib: wordcloud, and Anaconda: wordcloud
import pandas as pd
df = pd.DataFrame({'word': ['how', 'are', 'you', 'doing', 'this', 'afternoon'],
'count': [7, 10, 4, 1, 20, 100]})
word count
0 how 7
1 are 10
2 you 4
3 doing 1
4 this 20
5 afternoon 100
将 word
和 count
列转换为 dict
WordCloud().generate_from_frequencies()
需要 dict
- 使用以下方法之一
# method 1: convert to dict
data = dict(zip(df['word'].tolist(), df['count'].tolist()))
# method 2: convert to dict
data = df.set_index('word').to_dict()['count']
print(data)
[out]: {'how': 7, 'are': 10, 'you': 4, 'doing': 1, 'this': 20, 'afternoon': 100}
词云:
- 使用
.generate_from_frequencies
generate_from_frequencies(frequencies, max_font_size=None)
from wordcloud import WordCloud
wc = WordCloud(width=800, height=400, max_words=200).generate_from_frequencies(data)
情节
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 10))
plt.imshow(wc, interpolation='bilinear')
plt.axis('off')
plt.show()
使用图像遮罩:
twitter_mask = np.array(Image.open('twitter.png'))
wc = WordCloud(background_color='white', width=800, height=400, max_words=200, mask=twitter_mask).generate_from_frequencies(data_nyt)
plt.figure(figsize=(10, 10))
plt.imshow(wc, interpolation='bilinear')
plt.axis("off")
plt.figure()
plt.imshow(twitter_mask, cmap=plt.cm.gray, interpolation='bilinear')
plt.axis("off")
plt.show()
我要画一个词云。 'tweets.csv' 是一个 Pandas 数据框,它有一个名为 'text' 的列。绘制的图表并不是基于最常见的词,艰难。单词大小如何与它们在数据框中的频率相关联?
text = df_final.text.values
wordcloud = WordCloud(
#mask = logomask,
max_words = 1000,
width = 600,
height = 400,
#max_font_size = 1000,
#min_font_size = 100,
normalize_plurals = True,
#scale = 5,
#relative_scaling = 0,
background_color = 'black',
stopwords = STOPWORDS.union(stopwords)
).generate(str(text))
fig = plt.figure(
figsize = (50,40),
facecolor = 'k',
edgecolor = 'k')
plt.imshow(wordcloud, interpolation = 'bilinear')
plt.axis('off')
plt.tight_layout(pad=0)
plt.show()
我的数据框如下所示:
0 RT @Pontifex_pt: Temos que descobrir as riquezezas ...
1 RT @Pontifex_pt: Todos estamos em viagem rumo ...
2 RT @Pontifex_pt: Unamos as forças, em todos ...
3 RT @GeneralMourao: #Segurançapública, preocupa ...
4 RT @FIFAcom: The Brasileirao U-17 final provided ...
设置示例 DataFrame:
- 另见 DataCamp: Generating WordClouds in Python
- 软件包文档位于 WordCloud for Python documentation, GitHib: wordcloud, and Anaconda: wordcloud
import pandas as pd
df = pd.DataFrame({'word': ['how', 'are', 'you', 'doing', 'this', 'afternoon'],
'count': [7, 10, 4, 1, 20, 100]})
word count
0 how 7
1 are 10
2 you 4
3 doing 1
4 this 20
5 afternoon 100
将 word
和 count
列转换为 dict
WordCloud().generate_from_frequencies()
需要dict
- 使用以下方法之一
# method 1: convert to dict
data = dict(zip(df['word'].tolist(), df['count'].tolist()))
# method 2: convert to dict
data = df.set_index('word').to_dict()['count']
print(data)
[out]: {'how': 7, 'are': 10, 'you': 4, 'doing': 1, 'this': 20, 'afternoon': 100}
词云:
- 使用
.generate_from_frequencies
generate_from_frequencies(frequencies, max_font_size=None)
from wordcloud import WordCloud
wc = WordCloud(width=800, height=400, max_words=200).generate_from_frequencies(data)
情节
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 10))
plt.imshow(wc, interpolation='bilinear')
plt.axis('off')
plt.show()
使用图像遮罩:
twitter_mask = np.array(Image.open('twitter.png'))
wc = WordCloud(background_color='white', width=800, height=400, max_words=200, mask=twitter_mask).generate_from_frequencies(data_nyt)
plt.figure(figsize=(10, 10))
plt.imshow(wc, interpolation='bilinear')
plt.axis("off")
plt.figure()
plt.imshow(twitter_mask, cmap=plt.cm.gray, interpolation='bilinear')
plt.axis("off")
plt.show()