Keras 自动编码器:将编码器的权重绑定到解码器不起作用
Keras Autoencoder: Tying Weights from Encoder To Decoder not working
我正在创建一个自动编码器作为我的 Kaggle 竞赛完整模型的一部分。我试图将编码器的重量联系起来,转移到解码器。在第一个纪元之前,权重正确同步,之后,解码器权重只是冻结,并且跟不上梯度下降正在更新的编码器权重。
关于我在 google 遇到的这个问题,我几乎每个 post 都找了 12 个小时,似乎没有人知道我的案例的答案。最接近的是这个 但问题是通过不使用可变张量作为内核解决的,但是我已经没有使用那种类型的张量作为我的解码器内核,所以没有用。
我使用的是本文 https://towardsdatascience.com/build-the-right-autoencoder-tune-and-optimize-using-pca-principles-part-ii-24b9cca69bd6 中定义的 DenseTied Keras 自定义层 class,完全相同,只需更改我引用支持的 Keras 的方式以适合我的导入样式。
import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os
这是自定义图层定义
class DenseTied(tf.keras.layers.Layer):
def __init__(self, units,
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
tied_to=None,
**kwargs):
self.tied_to = tied_to
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'),)
super().__init__(**kwargs)
self.units = units
self.activation = tf.keras.activations.get(activation)
self.use_bias = use_bias
self.kernel_initializer = tf.keras.initializers.get(kernel_initializer)
self.bias_initializer = tf.keras.initializers.get(bias_initializer)
self.kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
self.bias_regularizer = tf.keras.regularizers.get(bias_regularizer)
self.activity_regularizer = tf.keras.regularizers.get(activity_regularizer)
self.kernel_constraint = tf.keras.constraints.get(kernel_constraint)
self.bias_constraint = tf.keras.constraints.get(bias_constraint)
self.input_spec = tf.keras.layers.InputSpec(min_ndim=2)
self.supports_masking = True
def build(self, input_shape):
assert len(input_shape) >= 2
input_dim = input_shape[-1]
if self.tied_to is not None:
self.kernel = tf.keras.backend.transpose(self.tied_to.kernel)
self.non_trainable_weights.append(self.kernel)
else:
self.kernel = self.add_weight(shape=(input_dim, self.units),
initializer=self.kernel_initializer,
name='kernel',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
if self.use_bias:
self.bias = self.add_weight(shape=(self.units,),
initializer=self.bias_initializer,
name='bias',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
else:
self.bias = None
self.input_spec = tf.keras.layers.InputSpec(min_ndim=2, axes={-1: input_dim})
self.built = True
def compute_output_shape(self, input_shape):
assert input_shape and len(input_shape) >= 2
output_shape = list(input_shape)
output_shape[-1] = self.units
return tuple(output_shape)
def call(self, inputs):
output = tf.keras.backend.dot(inputs, self.kernel)
if self.use_bias:
output = tf.keras.backend.bias_add(output, self.bias, data_format='channels_last')
if self.activation is not None:
output = self.activation(output)
return output
这是使用虚拟数据集训练和测试的模型
rand_samples = np.random.rand(16, 51)
dummy_ds = tf.data.Dataset.from_tensor_slices((rand_samples, rand_samples)).shuffle(16).batch(16)
encoder = tf.keras.layers.Dense(1, activation="linear", input_shape=(51,), use_bias=True)
decoder = DenseTied(51, activation="linear", tied_to=encoder, use_bias=True)
autoencoder = tf.keras.Sequential()
autoencoder.add(encoder)
autoencoder.add(decoder)
autoencoder.compile(metrics=['accuracy'],
loss='mean_squared_error',
optimizer='sgd')
autoencoder.summary()
print("Encoder Kernel Before 1 Epoch", encoder.kernel[0])
print("Decoder Kernel Before 1 Epoch", decoder.kernel[0][0])
autoencoder.fit(dummy_ds, epochs=1)
print("Encoder Kernel After 1 Epoch", encoder.kernel[0])
print("Decoder Kernel After 1 Epoch", decoder.kernel[0][0])
预期输出是两个内核在第一个元素中完全相同(为简单起见,只打印一个权重)
当前输出显示解码器内核未更新,与转置编码器内核相同
2019-09-06 14:55:42.070003: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library nvcuda.dll
2019-09-06 14:55:42.984580: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 0 with properties:
name: GeForce GTX 1060 major: 6 minor: 1 memoryClockRate(GHz): 1.733
pciBusID: 0000:01:00.0
2019-09-06 14:55:43.088109: I tensorflow/stream_executor/platform/default/dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip dlopen check.
2019-09-06 14:55:43.166145: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1763] Adding visible gpu devices: 0
2019-09-06 14:55:43.203865: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2019-09-06 14:55:43.277988: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 0 with properties:
name: GeForce GTX 1060 major: 6 minor: 1 memoryClockRate(GHz): 1.733
pciBusID: 0000:01:00.0
2019-09-06 14:55:43.300888: I tensorflow/stream_executor/platform/default/dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip dlopen check.
2019-09-06 14:55:43.309040: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1763] Adding visible gpu devices: 0
2019-09-06 14:55:44.077814: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1181] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-09-06 14:55:44.094542: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1187] 0
2019-09-06 14:55:44.099411: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1200] 0: N
2019-09-06 14:55:44.103424: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1326] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 4712 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060, pci bus id: 0000:01:00.0, compute capability: 6.1)
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense (Dense) (None, 1) 52
_________________________________________________________________
dense_tied (DenseTied) (None, 51) 103
=================================================================
Total params: 103
Trainable params: 103
Non-trainable params: 0
_________________________________________________________________
Encoder Kernel Before 1 Epoch tf.Tensor([0.20486075], shape=(1,), dtype=float32)
Decoder Kernel Before 1 Epoch tf.Tensor(0.20486075, shape=(), dtype=float32)
1/1 [==============================] - 1s 657ms/step - loss: 0.3396 - accuracy: 0.0000e+00
Encoder Kernel After 1 Epoch tf.Tensor([0.20530733], shape=(1,), dtype=float32)
Decoder Kernel After 1 Epoch tf.Tensor(0.20486075, shape=(), dtype=float32)
PS C:\Users\whitm\Desktop\CodeProjects\ForestClassifier-DEC>
我没看出我做错了什么。
权重不固定。您只是用第一层的转置权重初始化绑定层的权重,然后永远不会训练它们。 transpose
returns 一个新的 tensor/different 对象和 add_weight
创建一个新变量,因此在 build
之后两层之间的任何关系都将丢失。我认为这样做会更好:
def call(self, inputs):
output = tf.keras.backend.dot(inputs, tf.keras.backend.transpose(self.tied_to.kernel))
if self.use_bias:
output = tf.keras.backend.bias_add(output, self.tied_to.bias, data_format='channels_last')
if self.activation is not None:
output = self.activation(output)
return output
此处,绑定层始终明确使用第一层的权重,并且本身不会有任何权重(即从 build
中删除 add_weight
部分)。
为了绑定权重,我建议使用 Keras functional API 来共享图层。也就是说,这是一种将编码器和解码器之间的权重联系起来的替代实现:
class TransposableDense(tf.keras.layers.Dense):
def __init__(self, units, **kwargs):
super().__init__(units, **kwargs)
def build(self, input_shape):
assert len(input_shape) >= 2
input_dim = input_shape[-1]
self.t_output_dim = input_dim
self.kernel = self.add_weight(shape=(int(input_dim), self.units),
initializer=self.kernel_initializer,
name='kernel',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
if self.use_bias:
self.bias = self.add_weight(shape=(self.units,),
initializer=self.bias_initializer,
name='bias',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
self.bias_t = self.add_weight(shape=(input_dim,),
initializer=self.bias_initializer,
name='bias_t',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
else:
self.bias = None
self.bias_t = None
# self.input_spec = tf.keras.layers.InputSpec(min_ndim=2, axes={-1: input_dim})
self.built = True
def call(self, inputs, transpose=False):
bs, input_dim = inputs.get_shape()
kernel = self.kernel
bias = self.bias
if transpose:
assert input_dim == self.units
kernel = tf.keras.backend.transpose(kernel)
bias = self.bias_t
output = tf.keras.backend.dot(inputs, kernel)
if self.use_bias:
output = tf.keras.backend.bias_add(output, bias, data_format='channels_last')
if self.activation is not None:
output = self.activation(output)
return output
def compute_output_shape(self, input_shape):
bs, input_dim = input_shape
output_dim = self.units
if input_dim == self.units:
output_dim = self.t_output_dim
return bs, output_dim
这个密集层的内核可以通过调用transpose=True
层来转置。请注意,这可能 破坏 一些基本的 Keras 原则(例如,该层具有多个输出形状),但它应该适用于您的情况。
下面是一个示例,展示了如何使用它来定义模型:
a = tf.keras.layers.Input((51,))
dense = TransposableDense(1, activation='linear', use_bias=True)
encoder_out = dense(a)
decoder_out = dense(encoder_out, transpose=True)
encoder = tf.keras.Model(a, encoder_out)
autoencoder = tf.keras.Model(a, decoder_out)
我正在创建一个自动编码器作为我的 Kaggle 竞赛完整模型的一部分。我试图将编码器的重量联系起来,转移到解码器。在第一个纪元之前,权重正确同步,之后,解码器权重只是冻结,并且跟不上梯度下降正在更新的编码器权重。
关于我在 google 遇到的这个问题,我几乎每个 post 都找了 12 个小时,似乎没有人知道我的案例的答案。最接近的是这个
我使用的是本文 https://towardsdatascience.com/build-the-right-autoencoder-tune-and-optimize-using-pca-principles-part-ii-24b9cca69bd6 中定义的 DenseTied Keras 自定义层 class,完全相同,只需更改我引用支持的 Keras 的方式以适合我的导入样式。
import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os
这是自定义图层定义
class DenseTied(tf.keras.layers.Layer):
def __init__(self, units,
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
tied_to=None,
**kwargs):
self.tied_to = tied_to
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'),)
super().__init__(**kwargs)
self.units = units
self.activation = tf.keras.activations.get(activation)
self.use_bias = use_bias
self.kernel_initializer = tf.keras.initializers.get(kernel_initializer)
self.bias_initializer = tf.keras.initializers.get(bias_initializer)
self.kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
self.bias_regularizer = tf.keras.regularizers.get(bias_regularizer)
self.activity_regularizer = tf.keras.regularizers.get(activity_regularizer)
self.kernel_constraint = tf.keras.constraints.get(kernel_constraint)
self.bias_constraint = tf.keras.constraints.get(bias_constraint)
self.input_spec = tf.keras.layers.InputSpec(min_ndim=2)
self.supports_masking = True
def build(self, input_shape):
assert len(input_shape) >= 2
input_dim = input_shape[-1]
if self.tied_to is not None:
self.kernel = tf.keras.backend.transpose(self.tied_to.kernel)
self.non_trainable_weights.append(self.kernel)
else:
self.kernel = self.add_weight(shape=(input_dim, self.units),
initializer=self.kernel_initializer,
name='kernel',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
if self.use_bias:
self.bias = self.add_weight(shape=(self.units,),
initializer=self.bias_initializer,
name='bias',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
else:
self.bias = None
self.input_spec = tf.keras.layers.InputSpec(min_ndim=2, axes={-1: input_dim})
self.built = True
def compute_output_shape(self, input_shape):
assert input_shape and len(input_shape) >= 2
output_shape = list(input_shape)
output_shape[-1] = self.units
return tuple(output_shape)
def call(self, inputs):
output = tf.keras.backend.dot(inputs, self.kernel)
if self.use_bias:
output = tf.keras.backend.bias_add(output, self.bias, data_format='channels_last')
if self.activation is not None:
output = self.activation(output)
return output
这是使用虚拟数据集训练和测试的模型
rand_samples = np.random.rand(16, 51)
dummy_ds = tf.data.Dataset.from_tensor_slices((rand_samples, rand_samples)).shuffle(16).batch(16)
encoder = tf.keras.layers.Dense(1, activation="linear", input_shape=(51,), use_bias=True)
decoder = DenseTied(51, activation="linear", tied_to=encoder, use_bias=True)
autoencoder = tf.keras.Sequential()
autoencoder.add(encoder)
autoencoder.add(decoder)
autoencoder.compile(metrics=['accuracy'],
loss='mean_squared_error',
optimizer='sgd')
autoencoder.summary()
print("Encoder Kernel Before 1 Epoch", encoder.kernel[0])
print("Decoder Kernel Before 1 Epoch", decoder.kernel[0][0])
autoencoder.fit(dummy_ds, epochs=1)
print("Encoder Kernel After 1 Epoch", encoder.kernel[0])
print("Decoder Kernel After 1 Epoch", decoder.kernel[0][0])
预期输出是两个内核在第一个元素中完全相同(为简单起见,只打印一个权重)
当前输出显示解码器内核未更新,与转置编码器内核相同
2019-09-06 14:55:42.070003: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library nvcuda.dll
2019-09-06 14:55:42.984580: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 0 with properties:
name: GeForce GTX 1060 major: 6 minor: 1 memoryClockRate(GHz): 1.733
pciBusID: 0000:01:00.0
2019-09-06 14:55:43.088109: I tensorflow/stream_executor/platform/default/dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip dlopen check.
2019-09-06 14:55:43.166145: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1763] Adding visible gpu devices: 0
2019-09-06 14:55:43.203865: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2019-09-06 14:55:43.277988: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 0 with properties:
name: GeForce GTX 1060 major: 6 minor: 1 memoryClockRate(GHz): 1.733
pciBusID: 0000:01:00.0
2019-09-06 14:55:43.300888: I tensorflow/stream_executor/platform/default/dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip dlopen check.
2019-09-06 14:55:43.309040: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1763] Adding visible gpu devices: 0
2019-09-06 14:55:44.077814: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1181] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-09-06 14:55:44.094542: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1187] 0
2019-09-06 14:55:44.099411: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1200] 0: N
2019-09-06 14:55:44.103424: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1326] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 4712 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060, pci bus id: 0000:01:00.0, compute capability: 6.1)
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense (Dense) (None, 1) 52
_________________________________________________________________
dense_tied (DenseTied) (None, 51) 103
=================================================================
Total params: 103
Trainable params: 103
Non-trainable params: 0
_________________________________________________________________
Encoder Kernel Before 1 Epoch tf.Tensor([0.20486075], shape=(1,), dtype=float32)
Decoder Kernel Before 1 Epoch tf.Tensor(0.20486075, shape=(), dtype=float32)
1/1 [==============================] - 1s 657ms/step - loss: 0.3396 - accuracy: 0.0000e+00
Encoder Kernel After 1 Epoch tf.Tensor([0.20530733], shape=(1,), dtype=float32)
Decoder Kernel After 1 Epoch tf.Tensor(0.20486075, shape=(), dtype=float32)
PS C:\Users\whitm\Desktop\CodeProjects\ForestClassifier-DEC>
我没看出我做错了什么。
权重不固定。您只是用第一层的转置权重初始化绑定层的权重,然后永远不会训练它们。 transpose
returns 一个新的 tensor/different 对象和 add_weight
创建一个新变量,因此在 build
之后两层之间的任何关系都将丢失。我认为这样做会更好:
def call(self, inputs):
output = tf.keras.backend.dot(inputs, tf.keras.backend.transpose(self.tied_to.kernel))
if self.use_bias:
output = tf.keras.backend.bias_add(output, self.tied_to.bias, data_format='channels_last')
if self.activation is not None:
output = self.activation(output)
return output
此处,绑定层始终明确使用第一层的权重,并且本身不会有任何权重(即从 build
中删除 add_weight
部分)。
为了绑定权重,我建议使用 Keras functional API 来共享图层。也就是说,这是一种将编码器和解码器之间的权重联系起来的替代实现:
class TransposableDense(tf.keras.layers.Dense):
def __init__(self, units, **kwargs):
super().__init__(units, **kwargs)
def build(self, input_shape):
assert len(input_shape) >= 2
input_dim = input_shape[-1]
self.t_output_dim = input_dim
self.kernel = self.add_weight(shape=(int(input_dim), self.units),
initializer=self.kernel_initializer,
name='kernel',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
if self.use_bias:
self.bias = self.add_weight(shape=(self.units,),
initializer=self.bias_initializer,
name='bias',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
self.bias_t = self.add_weight(shape=(input_dim,),
initializer=self.bias_initializer,
name='bias_t',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
else:
self.bias = None
self.bias_t = None
# self.input_spec = tf.keras.layers.InputSpec(min_ndim=2, axes={-1: input_dim})
self.built = True
def call(self, inputs, transpose=False):
bs, input_dim = inputs.get_shape()
kernel = self.kernel
bias = self.bias
if transpose:
assert input_dim == self.units
kernel = tf.keras.backend.transpose(kernel)
bias = self.bias_t
output = tf.keras.backend.dot(inputs, kernel)
if self.use_bias:
output = tf.keras.backend.bias_add(output, bias, data_format='channels_last')
if self.activation is not None:
output = self.activation(output)
return output
def compute_output_shape(self, input_shape):
bs, input_dim = input_shape
output_dim = self.units
if input_dim == self.units:
output_dim = self.t_output_dim
return bs, output_dim
这个密集层的内核可以通过调用transpose=True
层来转置。请注意,这可能 破坏 一些基本的 Keras 原则(例如,该层具有多个输出形状),但它应该适用于您的情况。
下面是一个示例,展示了如何使用它来定义模型:
a = tf.keras.layers.Input((51,))
dense = TransposableDense(1, activation='linear', use_bias=True)
encoder_out = dense(a)
decoder_out = dense(encoder_out, transpose=True)
encoder = tf.keras.Model(a, encoder_out)
autoencoder = tf.keras.Model(a, decoder_out)