在 R 中绘制 LASSO 模型的交互作用
plotting interaction effects for LASSO models in R
我用交互项拟合了套索逻辑模型。然后我想使用交互图可视化这些交互。
我试图找到一些 R
函数来绘制 glmnet
模型的交互,但我找不到任何 .
是否有任何 R 包可以绘制 LASSO 的相互作用?
因为我找不到任何东西,所以我尝试通过绘制预测值来手动完成。但我收到了一些错误。
我的代码如下,
require(ISLR)
require(glmnet)
y <- Smarket$Direction
x <- model.matrix(Direction ~ Lag1 + Lag4* Volume, Smarket)[, -1]
lasso.mod <- cv.glmnet(x, y, alpha=1,family="binomial",nfolds = 5, type.measure="class",
lambda = seq(0.001,0.1,by = 0.001))
lasso.mod$lambda.min
pred = expand.grid(Lag1 = median(Smarket$Lag1),
Lag4 = c(-0.64,0.0385,0.596750),
Volume = seq(min(Smarket$Volume), max(Smarket$Volume), length=100))
lasso.mod1 <- glmnet(x, y, alpha=1,family="binomial",
lambda = lasso.mod$lambda.min)
pred$Direction = predict(lasso.mod1, newx=pred,
type="response", s= lasso.mod$lambda.min)
我收到这个错误:
Error in cbind2(1, newx) %*% nbeta :
not-yet-implemented method for <data.frame> %*% <dgCMatrix>
有什么建议可以解决这个问题吗?
谢谢
predict.glmnet
表示 newx
必须是矩阵。而你需要自己赋予交互价值。
library(dplyr)
pred = expand.grid(Lag1 = median(Smarket$Lag1),
Lag4 = c(-0.64,0.0385,0.596750),
Volume = seq(min(Smarket$Volume), max(Smarket$Volume), length=100)) %>%
mutate(`Lag4:Volume` = Lag4 * Volume) # preparing interaction values
pred$Direction = predict(lasso.mod1, newx = as.matrix(pred), # convert to matrix
type = "link", s= lasso.mod$lambda.min)
[编辑]
哦,我忽略了更通用,更好的方法。
pred = expand.grid(Lag1 = median(Smarket$Lag1),
Lag4 = c(-0.64,0.0385,0.596750),
Volume = seq(min(Smarket$Volume), max(Smarket$Volume), length=100))
pred$Direction = predict(lasso.mod1,
newx = model.matrix( ~ Lag1 + Lag4* Volume, pred)[, -1],
type="response", s= lasso.mod$lambda.min)
我用交互项拟合了套索逻辑模型。然后我想使用交互图可视化这些交互。
我试图找到一些 R
函数来绘制 glmnet
模型的交互,但我找不到任何 .
是否有任何 R 包可以绘制 LASSO 的相互作用?
因为我找不到任何东西,所以我尝试通过绘制预测值来手动完成。但我收到了一些错误。
我的代码如下,
require(ISLR)
require(glmnet)
y <- Smarket$Direction
x <- model.matrix(Direction ~ Lag1 + Lag4* Volume, Smarket)[, -1]
lasso.mod <- cv.glmnet(x, y, alpha=1,family="binomial",nfolds = 5, type.measure="class",
lambda = seq(0.001,0.1,by = 0.001))
lasso.mod$lambda.min
pred = expand.grid(Lag1 = median(Smarket$Lag1),
Lag4 = c(-0.64,0.0385,0.596750),
Volume = seq(min(Smarket$Volume), max(Smarket$Volume), length=100))
lasso.mod1 <- glmnet(x, y, alpha=1,family="binomial",
lambda = lasso.mod$lambda.min)
pred$Direction = predict(lasso.mod1, newx=pred,
type="response", s= lasso.mod$lambda.min)
我收到这个错误:
Error in cbind2(1, newx) %*% nbeta :
not-yet-implemented method for <data.frame> %*% <dgCMatrix>
有什么建议可以解决这个问题吗?
谢谢
predict.glmnet
表示 newx
必须是矩阵。而你需要自己赋予交互价值。
library(dplyr)
pred = expand.grid(Lag1 = median(Smarket$Lag1),
Lag4 = c(-0.64,0.0385,0.596750),
Volume = seq(min(Smarket$Volume), max(Smarket$Volume), length=100)) %>%
mutate(`Lag4:Volume` = Lag4 * Volume) # preparing interaction values
pred$Direction = predict(lasso.mod1, newx = as.matrix(pred), # convert to matrix
type = "link", s= lasso.mod$lambda.min)
[编辑]
哦,我忽略了更通用,更好的方法。
pred = expand.grid(Lag1 = median(Smarket$Lag1),
Lag4 = c(-0.64,0.0385,0.596750),
Volume = seq(min(Smarket$Volume), max(Smarket$Volume), length=100))
pred$Direction = predict(lasso.mod1,
newx = model.matrix( ~ Lag1 + Lag4* Volume, pred)[, -1],
type="response", s= lasso.mod$lambda.min)