如何在 python 中的数据框中查找具有相同值的列列表

how to find list of columns with same values in a dataframe in python

我正在尝试在数据框中查找列中具有相同值的列列表。 R whichAreInDouble 中有一个包,尝试在 python 中实现它。

df  =   
a b c d e f g h i   
1 2 3 4 1 2 3 4 5  
2 3 4 5 2 3 4 5 6  
3 4 5 6 3 4 5 6 7

它应该给我具有相同值的列列表 喜欢

a, e are equal
b,f are equal 
c,g are equal

让我们尝试使用 itertools 和组合:

from itertools import combinations

[(i, j) for i,j in combinations(df, 2) if df[i].equals(df[j])]

输出:

[('a', 'e'), ('b', 'f'), ('c', 'g'), ('d', 'h')]

以上解决方案很好。但是,可能会发生这样的情况,两列基本上具有相同的值,但编码不同。例如:

  b c d e f
1 1 3 4 1 a
2 3 4 5 2 c 
3 2 5 6 3 b
4 3 4 5 2 c  
5 4 5 6 3 d
6 2 4 5 2 b  
7 4 5 6 3 d

在上面的示例中,您可以看到 f 列在标签编码后与 b 列具有相同的值。那么,如何捕获像这样的重复列?
给你:

from tqdm import tqdm_notebook

# create an empty dataframe with same index as your dataframe(let's call it train_df), which will be filled with factorized version of original data.
train_enc = pd.DataFrame(index=train_df.index)
# now encode all the features 
for col in tqdm_notebook(train_df.columns):
    train_enc[col] = train_df[col].factorize()[0]
# find and print duplicated columns
dup_cols = {}
# start with one feature
for i, c1 in enumerate(tqdm_notebook(train_enc.columns)):
    # compare it all the remaining features
    for c2 in train_enc.columns[i + 1:]:
        # add the entries to above dict, if matches with the column in first loop
        if c2 not in dup_cols and np.all(train_enc[c1] == train_enc[c2]):
            dup_cols[c2] = c1
# now print dup_cols dictionary would have names of columns as keys that are identical to a column in value.
print(dup_cols)

与其他匹配的列名称,编码后将打印在标准输出中。

如果你想删除重复的列,你可以这样做:

train_df.drop(columns=dup_cols.keys(), axis=1, inplace=True)
from itertools import combinations

    cols_to_remove=[]
    for i,j in combinations(chk,2):
        if chk[i].equals(chk[j]):
            cols_to_remove.append(j)
    
    chk=chk.drop(cols_to_remove,axis=1)