AsyncLocal 值与 TPL 数据流不正确
AsyncLocal values not correct with TPL Dataflow
考虑这个例子:
class Program
{
private static readonly ITargetBlock<string> Mesh = CreateMesh();
private static readonly AsyncLocal<string> AsyncLocalContext
= new AsyncLocal<string>();
static async Task Main(string[] args)
{
var tasks = Enumerable.Range(1, 4)
.Select(ProcessMessage);
await Task.WhenAll(tasks);
Mesh.Complete();
await Mesh.Completion;
Console.WriteLine();
Console.WriteLine("Done");
}
private static async Task ProcessMessage(int number)
{
var param = number.ToString();
using (SetScopedAsyncLocal(param))
{
Console.WriteLine($"Before send {param}");
await Mesh.SendAsync(param);
Console.WriteLine($"After send {param}");
}
}
private static IDisposable SetScopedAsyncLocal(string value)
{
AsyncLocalContext.Value = value;
return new Disposer(() => AsyncLocalContext.Value = null);
}
private static ITargetBlock<string> CreateMesh()
{
var blockOptions = new ExecutionDataflowBlockOptions
{
BoundedCapacity = DataflowBlockOptions.Unbounded,
EnsureOrdered = false,
MaxDegreeOfParallelism = DataflowBlockOptions.Unbounded
};
var block1 = new TransformBlock<string, string>(async input =>
{
await Task.Yield();
Console.WriteLine(
$" Block1 [thread {Thread.CurrentThread.ManagedThreadId}]" +
$" Input: {input} - Context: {AsyncLocalContext.Value}.");
return input;
}, blockOptions);
var block2 = new TransformBlock<string, string>(async input =>
{
await Task.Yield();
Console.WriteLine(
$" Block2 [thread {Thread.CurrentThread.ManagedThreadId}]" +
$" Input: {input} - Context: {AsyncLocalContext.Value}.");
return input;
}, blockOptions);
var block3 = new ActionBlock<string>(async input =>
{
await Task.Yield();
Console.WriteLine(
$" Block3 [thread {Thread.CurrentThread.ManagedThreadId}]" +
$" Input: {input} - Context: {AsyncLocalContext.Value}.");
}, blockOptions);
var linkOptions = new DataflowLinkOptions {PropagateCompletion = true};
block1.LinkTo(block2, linkOptions);
block2.LinkTo(block3, linkOptions);
return new EncapsulatedActionBlock<string>(block1, block3.Completion);
}
}
internal class EncapsulatedActionBlock<T> : ITargetBlock<T>
{
private readonly ITargetBlock<T> _wrapped;
public EncapsulatedActionBlock(ITargetBlock<T> wrapped, Task completion)
{
_wrapped = wrapped;
Completion = completion;
}
public DataflowMessageStatus OfferMessage(DataflowMessageHeader messageHeader,
T messageValue, ISourceBlock<T> source, bool consumeToAccept) =>
_wrapped.OfferMessage(messageHeader, messageValue, source, consumeToAccept);
public void Complete() => _wrapped.Complete();
public void Fault(Exception exception) => _wrapped.Fault(exception);
public Task Completion { get; }
}
internal class Disposer : IDisposable
{
private readonly Action _disposeAction;
public Disposer(Action disposeAction)
{
_disposeAction = disposeAction
?? throw new ArgumentNullException(nameof(disposeAction));
}
public void Dispose()
{
_disposeAction();
}
}
执行结果类似于:
Before send 1
After send 1
Before send 2
After send 2
Before send 3
After send 3
Before send 4
After send 4
Block1 [thread 9] Input: 3 - Context: 3.
Block1 [thread 10] Input: 2 - Context: 1.
Block1 [thread 8] Input: 4 - Context: 4.
Block1 [thread 11] Input: 1 - Context: 2.
Block2 [thread 9] Input: 2 - Context: 3.
Block2 [thread 7] Input: 1 - Context: 2.
Block2 [thread 10] Input: 3 - Context: 3.
Block2 [thread 8] Input: 4 - Context: 4.
Block3 [thread 11] Input: 4 - Context: 4.
Block3 [thread 7] Input: 1 - Context: 2.
Block3 [thread 9] Input: 3 - Context: 3.
Block3 [thread 4] Input: 2 - Context: 3.
Done
如您所见,在移动到第二个 TDF 块后,传递的上下文值和存储的上下文值并不总是相同。此行为搞砸了多个日志记录框架的 LogContext 功能用法。
- 这是预期的行为吗(请解释原因)?
- TPL 数据流是否以某种方式弄乱了执行上下文?
要了解发生了什么,您必须了解数据流块的工作原理。它们内部没有阻塞的线程,等待消息到达。处理由工作任务完成。让我们考虑 MaxDegreeOfParallelism = 1
的简单(和默认)情况。最初有零个工作任务。当使用 SendAsync
异步发布消息时,发布消息的同一任务成为工作任务并开始处理消息。如果在处理第一条消息时发布另一条消息,则会发生其他情况。第二条消息将在块的输入队列中排队,发布它的任务将完成。第二条消息将由处理第一条消息的工作任务处理。只要队列中有消息入队,初始工作任务就会挑选它们并一条一条处理。如果在某个时刻没有更多的缓冲消息,工作任务将完成,块将 return 处于初始状态(零工作任务)。接下来的SendAsync
会成为新的worker任务,以此类推。使用 MaxDegreeOfParallelism = 1
,在任何给定时刻只能存在一个工作任务。
让我们用一个例子来证明这一点。下面是一个 ActionBlock
,它以延迟 X 提供,并以延迟 Y 处理每条消息。
private static void ActionBlockTest(int sendDelay, int processDelay)
{
Console.WriteLine($"SendDelay: {sendDelay}, ProcessDelay: {processDelay}");
var asyncLocal = new AsyncLocal<int>();
var actionBlock = new ActionBlock<int>(async i =>
{
await Task.Delay(processDelay);
Console.WriteLine($"Processed {i}, Context: {asyncLocal.Value}");
});
Task.Run(async () =>
{
foreach (var i in Enumerable.Range(1, 5))
{
asyncLocal.Value = i;
await actionBlock.SendAsync(i);
await Task.Delay(sendDelay);
}
}).Wait();
actionBlock.Complete();
actionBlock.Completion.Wait();
}
让我们看看如果我们快速发送消息并缓慢处理它们会发生什么:
ActionBlockTest(100, 200); // .NET Core 3.0
SendDelay: 100, ProcessDelay: 200
Processed 1, Context: 1
Processed 2, Context: 1
Processed 3, Context: 1
Processed 4, Context: 1
Processed 5, Context: 1
AsyncLocal
上下文保持不变,因为同一个工作任务处理了所有消息。
现在让我们慢慢发送消息并快速处理它们:
ActionBlockTest(200, 100); // .NET Core 3.0
SendDelay: 200, ProcessDelay: 100
Processed 1, Context: 1
Processed 2, Context: 2
Processed 3, Context: 3
Processed 4, Context: 4
Processed 5, Context: 5
每条消息的 AsyncLocal
上下文都不同,因为每条消息都由不同的工作任务处理。
这个故事的道德教训是,每个 SendAsync
都不能保证创建一个异步工作流来跟踪消息,直到它的旅程结束,到达管道的尽头。因此 AsyncLocal
class 不能用于保存每条消息的环境数据。
考虑这个例子:
class Program
{
private static readonly ITargetBlock<string> Mesh = CreateMesh();
private static readonly AsyncLocal<string> AsyncLocalContext
= new AsyncLocal<string>();
static async Task Main(string[] args)
{
var tasks = Enumerable.Range(1, 4)
.Select(ProcessMessage);
await Task.WhenAll(tasks);
Mesh.Complete();
await Mesh.Completion;
Console.WriteLine();
Console.WriteLine("Done");
}
private static async Task ProcessMessage(int number)
{
var param = number.ToString();
using (SetScopedAsyncLocal(param))
{
Console.WriteLine($"Before send {param}");
await Mesh.SendAsync(param);
Console.WriteLine($"After send {param}");
}
}
private static IDisposable SetScopedAsyncLocal(string value)
{
AsyncLocalContext.Value = value;
return new Disposer(() => AsyncLocalContext.Value = null);
}
private static ITargetBlock<string> CreateMesh()
{
var blockOptions = new ExecutionDataflowBlockOptions
{
BoundedCapacity = DataflowBlockOptions.Unbounded,
EnsureOrdered = false,
MaxDegreeOfParallelism = DataflowBlockOptions.Unbounded
};
var block1 = new TransformBlock<string, string>(async input =>
{
await Task.Yield();
Console.WriteLine(
$" Block1 [thread {Thread.CurrentThread.ManagedThreadId}]" +
$" Input: {input} - Context: {AsyncLocalContext.Value}.");
return input;
}, blockOptions);
var block2 = new TransformBlock<string, string>(async input =>
{
await Task.Yield();
Console.WriteLine(
$" Block2 [thread {Thread.CurrentThread.ManagedThreadId}]" +
$" Input: {input} - Context: {AsyncLocalContext.Value}.");
return input;
}, blockOptions);
var block3 = new ActionBlock<string>(async input =>
{
await Task.Yield();
Console.WriteLine(
$" Block3 [thread {Thread.CurrentThread.ManagedThreadId}]" +
$" Input: {input} - Context: {AsyncLocalContext.Value}.");
}, blockOptions);
var linkOptions = new DataflowLinkOptions {PropagateCompletion = true};
block1.LinkTo(block2, linkOptions);
block2.LinkTo(block3, linkOptions);
return new EncapsulatedActionBlock<string>(block1, block3.Completion);
}
}
internal class EncapsulatedActionBlock<T> : ITargetBlock<T>
{
private readonly ITargetBlock<T> _wrapped;
public EncapsulatedActionBlock(ITargetBlock<T> wrapped, Task completion)
{
_wrapped = wrapped;
Completion = completion;
}
public DataflowMessageStatus OfferMessage(DataflowMessageHeader messageHeader,
T messageValue, ISourceBlock<T> source, bool consumeToAccept) =>
_wrapped.OfferMessage(messageHeader, messageValue, source, consumeToAccept);
public void Complete() => _wrapped.Complete();
public void Fault(Exception exception) => _wrapped.Fault(exception);
public Task Completion { get; }
}
internal class Disposer : IDisposable
{
private readonly Action _disposeAction;
public Disposer(Action disposeAction)
{
_disposeAction = disposeAction
?? throw new ArgumentNullException(nameof(disposeAction));
}
public void Dispose()
{
_disposeAction();
}
}
执行结果类似于:
Before send 1 After send 1 Before send 2 After send 2 Before send 3 After send 3 Before send 4 After send 4 Block1 [thread 9] Input: 3 - Context: 3. Block1 [thread 10] Input: 2 - Context: 1. Block1 [thread 8] Input: 4 - Context: 4. Block1 [thread 11] Input: 1 - Context: 2. Block2 [thread 9] Input: 2 - Context: 3. Block2 [thread 7] Input: 1 - Context: 2. Block2 [thread 10] Input: 3 - Context: 3. Block2 [thread 8] Input: 4 - Context: 4. Block3 [thread 11] Input: 4 - Context: 4. Block3 [thread 7] Input: 1 - Context: 2. Block3 [thread 9] Input: 3 - Context: 3. Block3 [thread 4] Input: 2 - Context: 3. Done
如您所见,在移动到第二个 TDF 块后,传递的上下文值和存储的上下文值并不总是相同。此行为搞砸了多个日志记录框架的 LogContext 功能用法。
- 这是预期的行为吗(请解释原因)?
- TPL 数据流是否以某种方式弄乱了执行上下文?
要了解发生了什么,您必须了解数据流块的工作原理。它们内部没有阻塞的线程,等待消息到达。处理由工作任务完成。让我们考虑 MaxDegreeOfParallelism = 1
的简单(和默认)情况。最初有零个工作任务。当使用 SendAsync
异步发布消息时,发布消息的同一任务成为工作任务并开始处理消息。如果在处理第一条消息时发布另一条消息,则会发生其他情况。第二条消息将在块的输入队列中排队,发布它的任务将完成。第二条消息将由处理第一条消息的工作任务处理。只要队列中有消息入队,初始工作任务就会挑选它们并一条一条处理。如果在某个时刻没有更多的缓冲消息,工作任务将完成,块将 return 处于初始状态(零工作任务)。接下来的SendAsync
会成为新的worker任务,以此类推。使用 MaxDegreeOfParallelism = 1
,在任何给定时刻只能存在一个工作任务。
让我们用一个例子来证明这一点。下面是一个 ActionBlock
,它以延迟 X 提供,并以延迟 Y 处理每条消息。
private static void ActionBlockTest(int sendDelay, int processDelay)
{
Console.WriteLine($"SendDelay: {sendDelay}, ProcessDelay: {processDelay}");
var asyncLocal = new AsyncLocal<int>();
var actionBlock = new ActionBlock<int>(async i =>
{
await Task.Delay(processDelay);
Console.WriteLine($"Processed {i}, Context: {asyncLocal.Value}");
});
Task.Run(async () =>
{
foreach (var i in Enumerable.Range(1, 5))
{
asyncLocal.Value = i;
await actionBlock.SendAsync(i);
await Task.Delay(sendDelay);
}
}).Wait();
actionBlock.Complete();
actionBlock.Completion.Wait();
}
让我们看看如果我们快速发送消息并缓慢处理它们会发生什么:
ActionBlockTest(100, 200); // .NET Core 3.0
SendDelay: 100, ProcessDelay: 200
Processed 1, Context: 1
Processed 2, Context: 1
Processed 3, Context: 1
Processed 4, Context: 1
Processed 5, Context: 1
AsyncLocal
上下文保持不变,因为同一个工作任务处理了所有消息。
现在让我们慢慢发送消息并快速处理它们:
ActionBlockTest(200, 100); // .NET Core 3.0
SendDelay: 200, ProcessDelay: 100
Processed 1, Context: 1
Processed 2, Context: 2
Processed 3, Context: 3
Processed 4, Context: 4
Processed 5, Context: 5
每条消息的 AsyncLocal
上下文都不同,因为每条消息都由不同的工作任务处理。
这个故事的道德教训是,每个 SendAsync
都不能保证创建一个异步工作流来跟踪消息,直到它的旅程结束,到达管道的尽头。因此 AsyncLocal
class 不能用于保存每条消息的环境数据。