为什么我的完全卷积自动编码器不对称?

Why is my Fully Convolutional Autoencoder not symmetric?

我正在开发一个全卷积自动编码器,它采用 3 个通道作为输入并输出 2 个通道(输入:LAB,输出:AB)。因为输出应该和输入一样大,所以我用的是Full Convolution。

代码:

import torch.nn as nn


class AE(nn.Module):
   def __init__(self):
       super(AE, self).__init__()

        self.encoder = nn.Sequential(
           # conv 1
           nn.Conv2d(in_channels=3, out_channels=64, kernel_size=5, stride=1, padding=1),
           nn.BatchNorm2d(64),
           nn.ReLU(),
           nn.MaxPool2d(kernel_size=2, stride=2),

           # conv 2
           nn.Conv2d(in_channels=64, out_channels=128, kernel_size=5, stride=1, padding=1),
           nn.BatchNorm2d(128),
           nn.ReLU(),
           nn.MaxPool2d(kernel_size=2, stride=2),

           # conv 3
           nn.Conv2d(in_channels=128, out_channels=256, kernel_size=5, stride=1, padding=1),
           nn.BatchNorm2d(256),
           nn.ReLU(),
           nn.MaxPool2d(kernel_size=2, stride=2),

           # conv 4
           nn.Conv2d(in_channels=256, out_channels=512, kernel_size=5, stride=1, padding=1),
           nn.BatchNorm2d(512),
           nn.ReLU(),
           nn.MaxPool2d(kernel_size=2, stride=2),

           # conv 5
           nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=5, stride=1, padding=1),
           nn.BatchNorm2d(1024),
           nn.ReLU()

       )

       self.decoder = nn.Sequential(
           # conv 6
           nn.ConvTranspose2d(in_channels=1024, out_channels=512, kernel_size=5, stride=1, padding=1),
           nn.BatchNorm2d(512),
           nn.ReLU(),

           # conv 7
           nn.Upsample(scale_factor=2, mode='bilinear'),
           nn.ConvTranspose2d(in_channels=512, out_channels=256, kernel_size=5, stride=1, padding=1),
           nn.BatchNorm2d(256),
           nn.ReLU(),

           # conv 8
           nn.Upsample(scale_factor=2, mode='bilinear'),
           nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=5, stride=1, padding=1),
           nn.BatchNorm2d(128),
           nn.ReLU(),

           # conv 9
           nn.Upsample(scale_factor=2, mode='bilinear'),
           nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=5, stride=1, padding=1),
           nn.BatchNorm2d(64),
           nn.ReLU(),

           # conv 10 out
           nn.Upsample(scale_factor=2, mode='bilinear'),
           nn.ConvTranspose2d(in_channels=64, out_channels=2, kernel_size=5, stride=1, padding=1),
           nn.Softmax()    # multi-class classification

           # TODO softmax deprecated
       )

   def forward(self, x):
       x = self.encoder(x)
       x = self.decoder(x)
       return x

输出张量的大小应该是:torch.Size([1, 2, 199, 253])

输出张量的大小实际上有:torch.Size([1, 2, 190, 238])

我的主要问题是结合 Conv2d 和 MaxPool2d 并在 ConvTranspose2d 中设置正确的参数值。因此,我分别使用 MaxPool2d 的 Upsample 函数和 ConvTranspose2d 仅用于 Conv2d。但是我还是有点不对称,我真的不知道为什么。

感谢您的帮助!

有两个问题。

首先是填充不足:使用 kernel_size=5 你的卷积每次应用时都会将图像缩小 4(每边 2 个像素),所以你需要 padding=2,而不仅仅是 1 , 在所有地方。

其次是 "uneven" 输入大小。我的意思是,一旦你的卷积被适当地填充,你就会剩下下采样操作,它在每个点都试图将你的图像分辨率分成两半。当他们失败时,他们只是 return 一个较小的结果(整数除法丢弃余数)。由于您的网络有 4 个连续的 2x 下采样操作,因此您需要输入具有 H, W 维度,它是 2^4=16 的倍数。然后你实际上会得到同样形状的输出。下面的例子

import torch
import torch.nn as nn

class AE(nn.Module):
    def __init__(self):
        super(AE, self).__init__()

        self.encoder = nn.Sequential(
            # conv 1
            nn.Conv2d(in_channels=3, out_channels=64, kernel_size=5, stride=1, padding=2),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2),

            # conv 2
            nn.Conv2d(in_channels=64, out_channels=128, kernel_size=5, stride=1, padding=2),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2),

            # conv 3
            nn.Conv2d(in_channels=128, out_channels=256, kernel_size=5, stride=1, padding=2),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2),

            # conv 4
            nn.Conv2d(in_channels=256, out_channels=512, kernel_size=5, stride=1, padding=2),
            nn.BatchNorm2d(512),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2),

            # conv 5
            nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=5, stride=1, padding=2),
            nn.BatchNorm2d(1024),
            nn.ReLU()
        )

        self.decoder = nn.Sequential(
            # conv 6
            nn.ConvTranspose2d(in_channels=1024, out_channels=512, kernel_size=5, stride=1, padding=2),
            nn.BatchNorm2d(512),
            nn.ReLU(),

            # conv 7
            nn.Upsample(scale_factor=2, mode='bilinear'),
            nn.ConvTranspose2d(in_channels=512, out_channels=256, kernel_size=5, stride=1, padding=2),
            nn.BatchNorm2d(256),
            nn.ReLU(),

            # conv 8
            nn.Upsample(scale_factor=2, mode='bilinear'),
            nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=5, stride=1, padding=2),
            nn.BatchNorm2d(128),
            nn.ReLU(),

            # conv 9
            nn.Upsample(scale_factor=2, mode='bilinear'),
            nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=5, stride=1, padding=2),
            nn.BatchNorm2d(64),
            nn.ReLU(),

            # conv 10 out
            nn.Upsample(scale_factor=2, mode='bilinear'),
            nn.ConvTranspose2d(in_channels=64, out_channels=2, kernel_size=5, stride=1, padding=2),
            nn.Softmax()    # multi-class classification
        )

    def forward(self, x):
        x = self.encoder(x)
        x = self.decoder(x)
        return x

input = torch.randn(1, 3, 6*16, 7*16)
output = AE()(input)
print(input.shape)
print(output.shape)