boosted tree的值是什么意思?
What is the meaning of the value of the boosted tree?
我画了一棵树,在树的末端(在树叶中)显示了一些值。它们是什么意思?
# model parameters
colsample_bytree = 0.4
objective = 'binary:logistic'
learning_rate = 0.05
eval_metric = 'auc'
max_depth = 8
min_child_weight = 4
n_estimators = 5000
seed = 7
# create and train model
bst = xgb.train(param,
dtrain,
num_boost_round = best_iteration)
dot = xgb.to_graphviz(bst, rankdir='LR')
dot.render("trees1")
我以为,这是一个预测的 proba 分数,但叶子值的范围高达 0.01。而 predicted proba score' range is up to 1. May be, it means predicted proba' score divided by 10 (e.g. leaf value = 0.01 means that predicted proba = 0.1)?
为什么有些叶子有负值(例如-0.01)?
谢谢。
一片叶子的价值是你的 "eval_metric",在你的分裂中 :)。对你来说就是AUC。
这里是一棵树的所有属性:
n_nodes = estimator.tree_.node_count
children_left = estimator.tree_.children_left
children_right = estimator.tree_.children_right
feature = estimator.tree_.feature
threshold = estimator.tree_.threshold
在文档中找不到它,但 "tree_.impurity" 确实存在。
我画了一棵树,在树的末端(在树叶中)显示了一些值。它们是什么意思?
# model parameters
colsample_bytree = 0.4
objective = 'binary:logistic'
learning_rate = 0.05
eval_metric = 'auc'
max_depth = 8
min_child_weight = 4
n_estimators = 5000
seed = 7
# create and train model
bst = xgb.train(param,
dtrain,
num_boost_round = best_iteration)
dot = xgb.to_graphviz(bst, rankdir='LR')
dot.render("trees1")
我以为,这是一个预测的 proba 分数,但叶子值的范围高达 0.01。而 predicted proba score' range is up to 1. May be, it means predicted proba' score divided by 10 (e.g. leaf value = 0.01 means that predicted proba = 0.1)?
为什么有些叶子有负值(例如-0.01)? 谢谢。
一片叶子的价值是你的 "eval_metric",在你的分裂中 :)。对你来说就是AUC。
这里是一棵树的所有属性:
n_nodes = estimator.tree_.node_count
children_left = estimator.tree_.children_left
children_right = estimator.tree_.children_right
feature = estimator.tree_.feature
threshold = estimator.tree_.threshold
在文档中找不到它,但 "tree_.impurity" 确实存在。