从 PySpark 中的类别分布中查找值的百分位数

Find percentiles of values from distributions of categories in PySpark

我有以下 PySpark 数据框(比如 df)。它有 nametimestampcategoryvalue.

+------+-------------------+--------+-----+
|  name|          timestamp|category|value|
+------+-------------------+--------+-----+
| name1|2019-01-17 00:00:00|       A|11.23|
| name2|2019-01-17 00:00:00|       A|14.57|
| name3|2019-01-10 00:00:00|       B| 2.21|
| name4|2019-01-10 00:00:00|       B| 8.76|
| name5|2019-01-17 00:00:00|       A|18.71|
| name6|2019-01-10 00:00:00|       A|17.78|
| name7|2019-01-10 00:00:00|       A| 5.52|
| name8|2019-01-10 00:00:00|       A| 9.91|
| name9|2019-01-17 00:00:00|       B| 1.16|
|name10|2019-01-17 00:00:00|       B| 12.0|
+------+-------------------+--------+-----+

我想在上面提到的数据框中添加一个新列,它为我提供每个名称在包含相同[=17]成员的分布中的值的百分位=] 和 timestamp

我的预期输出如下:

+------+-------------------+--------+-----+---------+
|name  |timestamp          |category|value|pct_value|
+------+-------------------+--------+-----+---------+
|name1 |2019-01-17 00:00:00|A       |11.23|1        |
|name10|2019-01-17 00:00:00|B       |12.0 |2        |
|name2 |2019-01-17 00:00:00|A       |14.57|2        |
|name3 |2019-01-10 00:00:00|B       |2.21 |1        |
|name4 |2019-01-10 00:00:00|B       |8.76 |2        |
+------+-------------------+--------+-----+---------+
only showing top 5 rows

最好的方法是什么?

我试过以下方法:

import pyspark.sql.functions as F
from pyspark.sql import Window as W

w_cat = W.partitionBy('category', 'timestamp').orderBy("value")

df_new = ( df.select( '*', F.ntile(1000).over(w_cat).alias( 'pct_value' ) ) ).persist()


df_new.orderBy('name', 'timestamp').show(5,False)

这给出了正确的预期输出。但是,当我在拥有数百万行的实际数据上尝试这种方法时,这种方法需要很长时间(小时)。

您可以使用下面提到的代码生成上面给出的数据框 (df):

Stats = Row("name", "timestamp", "category", "value")

stat1 = Stats('name1', "2019-01-17 00:00:00", "A", 11.23)
stat2 = Stats('name2', "2019-01-17 00:00:00", "A", 14.57)
stat3 = Stats('name3', "2019-01-10 00:00:00", "B", 2.21)
stat4 = Stats('name4', "2019-01-10 00:00:00", "B", 8.76)
stat5 = Stats('name5', "2019-01-17 00:00:00", "A", 18.71)
stat6 = Stats('name6', "2019-01-10 00:00:00", "A", 17.78)
stat7 = Stats('name7', "2019-01-10 00:00:00", "A", 5.52)
stat8 = Stats('name8', "2019-01-10 00:00:00", "A", 9.91)
stat9 = Stats('name9', "2019-01-17 00:00:00", "B", 1.16)
stat10 = Stats('name10', "2019-01-17 00:00:00", "B", 12.0)

stat_lst = [stat1 , stat2, stat3, stat4, stat5, stat6, stat7, stat8, stat9, stat10]
df = spark.createDataFrame(stat_lst)

你可以试试percentile_approx功能。

from pyspark.sql import Window
import pyspark.sql.functions as F

grp_window = Window.partitionBy('name')
# For median, i.e. 0.5 quantile
magic_percentile = F.expr('percentile_approx(val, 0.5)')

df.withColumn('pct_value', magic_percentile.over(grp_window))
# OR 
df.groupBy('name').agg(magic_percentile.alias('pct_value'))

您也可以使用 percent_rank 函数:

df.select('pct_value', percent_rank().over(w).alias("percentile"))\
    .where('percentile == 0.6').show()

您也可以传递一个百分位数数组,但这里的问题是您将在 return 中得到一个 list:

quantiles = F.expr('percentile_approx(val, array(0.25, 0.5, 0.75))')