如何简化 Maxima CAS 中的 log(8)/log(2)?
How to simplify log(8)/log(2) in Maxima CAS?
我想简化log(8)/log(2)
我知道
log(8)/log(2) = log(2^3)/log(2) = 3*log(2)/log(2) = 3
有可能 in Maxima 但对我不起作用:
Maxima 5.41.0 http://maxima.sourceforge.net
using Lisp GNU Common Lisp (GCL) GCL 2.6.12
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
The function bug_report() provides bug reporting information.
(%i1) log(8)/log(2);
log(8)
(%o1) ------
log(2)
(%i2) logexpand;
(%o2) true
(%i3) log(2^3)/log(2);
(%o3) log(8)
------
log(2)
(%i4) logexpand;
(%o4) true
我使用:
round(float(log(8)/log(2));
但我认为这不是最佳解决方案(我使用整数)
问题:
- 怎么做?
- 为什么它有效 in Maxima doc,但在我的 Maxima 中却无效?
这对我适用于 Maxima 5.43.0:
(%i1) radcan(log(8)/log(2));
(%o1) 3
(%i2) radcan(log(2^3)/log(2));
(%o2) 3
千里马说
-- Function: radcan (<expr>)
Simplifies <expr>, which can contain logs, exponentials, and
radicals, by converting it into a form which is canonical over a
large class of expressions and a given ordering of variables; that
is, all functionally equivalent forms are mapped into a unique
form. For a somewhat larger class of expressions, 'radcan'
produces a regular form. Two equivalent expressions in this class
do not necessarily have the same appearance, but their difference
can be simplified by 'radcan' to zero.
在此上下文中,它对数字 8
进行因式分解,然后将 3 的幂移动到对数之外,从而可以取消 2 的剩余对数:
(%i3) radcan(log(8));
(%o3) 3 log(2)
我想简化log(8)/log(2)
我知道
log(8)/log(2) = log(2^3)/log(2) = 3*log(2)/log(2) = 3
有可能 in Maxima 但对我不起作用:
Maxima 5.41.0 http://maxima.sourceforge.net
using Lisp GNU Common Lisp (GCL) GCL 2.6.12
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
The function bug_report() provides bug reporting information.
(%i1) log(8)/log(2);
log(8)
(%o1) ------
log(2)
(%i2) logexpand;
(%o2) true
(%i3) log(2^3)/log(2);
(%o3) log(8)
------
log(2)
(%i4) logexpand;
(%o4) true
我使用:
round(float(log(8)/log(2));
但我认为这不是最佳解决方案(我使用整数)
问题:
- 怎么做?
- 为什么它有效 in Maxima doc,但在我的 Maxima 中却无效?
这对我适用于 Maxima 5.43.0:
(%i1) radcan(log(8)/log(2));
(%o1) 3
(%i2) radcan(log(2^3)/log(2));
(%o2) 3
千里马说
-- Function: radcan (<expr>)
Simplifies <expr>, which can contain logs, exponentials, and
radicals, by converting it into a form which is canonical over a
large class of expressions and a given ordering of variables; that
is, all functionally equivalent forms are mapped into a unique
form. For a somewhat larger class of expressions, 'radcan'
produces a regular form. Two equivalent expressions in this class
do not necessarily have the same appearance, but their difference
can be simplified by 'radcan' to zero.
在此上下文中,它对数字 8
进行因式分解,然后将 3 的幂移动到对数之外,从而可以取消 2 的剩余对数:
(%i3) radcan(log(8));
(%o3) 3 log(2)