处理递归和类型时如何减少代码重复
How to reduce code duplication when dealing with recursive sum types
我目前正在为一种编程语言开发一个简单的解释器,我有这样的数据类型:
data Expr
= Variable String
| Number Int
| Add [Expr]
| Sub Expr Expr
我有很多函数可以做一些简单的事情,比如:
-- Substitute a value for a variable
substituteName :: String -> Int -> Expr -> Expr
substituteName name newValue = go
where
go (Variable x)
| x == name = Number newValue
go (Add xs) =
Add $ map go xs
go (Sub x y) =
Sub (go x) (go y)
go other = other
-- Replace subtraction with a constant with addition by a negative number
replaceSubWithAdd :: Expr -> Expr
replaceSubWithAdd = go
where
go (Sub x (Number y)) =
Add [go x, Number (-y)]
go (Add xs) =
Add $ map go xs
go (Sub x y) =
Sub (go x) (go y)
go other = other
但是在这些函数中的每一个中,我都必须重复递归调用代码的部分,只需对函数的一部分进行微小的更改。有没有更普遍的方法来做到这一点?我宁愿不必复制和粘贴这部分:
go (Add xs) =
Add $ map go xs
go (Sub x y) =
Sub (go x) (go y)
go other = other
并且每次只更改一个案例,因为像这样复制代码似乎效率低下。
我能想出的唯一解决方案是有一个函数,它首先在整个数据结构上调用一个函数,然后在结果上递归调用,如下所示:
recurseAfter :: (Expr -> Expr) -> Expr -> Expr
recurseAfter f x =
case f x of
Add xs ->
Add $ map (recurseAfter f) xs
Sub x y ->
Sub (recurseAfter f x) (recurseAfter f y)
other -> other
substituteName :: String -> Int -> Expr -> Expr
substituteName name newValue =
recurseAfter $ \case
Variable x
| x == name -> Number newValue
other -> other
replaceSubWithAdd :: Expr -> Expr
replaceSubWithAdd =
recurseAfter $ \case
Sub x (Number y) ->
Add [x, Number (-y)]
other -> other
但我觉得应该已经有一种更简单的方法可以做到这一点。我错过了什么吗?
恭喜,您刚刚重新发现变形!
这是您的代码,经过重新措辞,以便与 recursion-schemes
包一起使用。 las,它并不短,因为我们需要一些样板文件来使机器工作。 (可能有一些自动方法可以避免样板,例如使用泛型。我只是不知道。)
下面,您的 recurseAfter
被替换为标准的 ana
。
我们首先定义你的递归类型,以及它作为不动点的函子。
{-# LANGUAGE DeriveFunctor, TypeFamilies, LambdaCase #-}
{-# OPTIONS -Wall #-}
module AnaExpr where
import Data.Functor.Foldable
data Expr
= Variable String
| Number Int
| Add [Expr]
| Sub Expr Expr
deriving (Show)
data ExprF a
= VariableF String
| NumberF Int
| AddF [a]
| SubF a a
deriving (Functor)
然后我们用几个实例将两者连接起来,这样我们就可以将Expr
展开成同构的ExprF Expr
,再折回去
type instance Base Expr = ExprF
instance Recursive Expr where
project (Variable s) = VariableF s
project (Number i) = NumberF i
project (Add es) = AddF es
project (Sub e1 e2) = SubF e1 e2
instance Corecursive Expr where
embed (VariableF s) = Variable s
embed (NumberF i) = Number i
embed (AddF es) = Add es
embed (SubF e1 e2) = Sub e1 e2
最后,我们调整了您的原始代码,并添加了一些测试。
substituteName :: String -> Int -> Expr -> Expr
substituteName name newValue = ana $ \case
Variable x | x == name -> NumberF newValue
other -> project other
testSub :: Expr
testSub = substituteName "x" 42 (Add [Add [Variable "x"], Number 0])
replaceSubWithAdd :: Expr -> Expr
replaceSubWithAdd = ana $ \case
Sub x (Number y) -> AddF [x, Number (-y)]
other -> project other
testReplace :: Expr
testReplace = replaceSubWithAdd
(Add [Sub (Add [Variable "x", Sub (Variable "y") (Number 34)]) (Number 10), Number 4])
另一种方法是仅定义 ExprF a
,然后派生 type Expr = Fix ExprF
。这节省了上面的一些样板(例如两个实例),代价是必须使用 Fix (VariableF ...)
而不是 Variable ...
,以及其他构造函数的类似方法。
可以使用模式同义词进一步缓解这种情况(但代价是多一点样板文件)。
更新:我终于找到了 automagic 工具,使用模板 Haskell。这使得整个代码相当短。请注意,ExprF
仿函数和上面的两个实例仍然存在,我们仍然需要使用它们。我们只是省去了必须手动定义它们的麻烦,但仅此一项就节省了很多精力。
{-# LANGUAGE DeriveFunctor, DeriveTraversable, TypeFamilies, LambdaCase, TemplateHaskell #-}
{-# OPTIONS -Wall #-}
module AnaExpr where
import Data.Functor.Foldable
import Data.Functor.Foldable.TH
data Expr
= Variable String
| Number Int
| Add [Expr]
| Sub Expr Expr
deriving (Show)
makeBaseFunctor ''Expr
substituteName :: String -> Int -> Expr -> Expr
substituteName name newValue = ana $ \case
Variable x | x == name -> NumberF newValue
other -> project other
testSub :: Expr
testSub = substituteName "x" 42 (Add [Add [Variable "x"], Number 0])
replaceSubWithAdd :: Expr -> Expr
replaceSubWithAdd = ana $ \case
Sub x (Number y) -> AddF [x, Number (-y)]
other -> project other
testReplace :: Expr
testReplace = replaceSubWithAdd
(Add [Sub (Add [Variable "x", Sub (Variable "y") (Number 34)]) (Number 10), Number 4])
作为替代方法,这也是 uniplate
包的典型用例。它可以使用 Data.Data
泛型而不是模板 Haskell 来生成样板文件,因此如果您为 Expr
:
派生 Data
个实例
import Data.Data
data Expr
= Variable String
| Number Int
| Add [Expr]
| Sub Expr Expr
deriving (Show, Data)
然后 Data.Generics.Uniplate.Data
中的 transform
函数递归地对每个嵌套的 Expr
:
应用一个函数
import Data.Generics.Uniplate.Data
substituteName :: String -> Int -> Expr -> Expr
substituteName name newValue = transform f
where f (Variable x) | x == name = Number newValue
f other = other
replaceSubWithAdd :: Expr -> Expr
replaceSubWithAdd = transform f
where f (Sub x (Number y)) = Add [x, Number (-y)]
f other = other
请注意,特别是在replaceSubWithAdd
中,函数f
被编写为执行非递归替换; transform
使它在 x :: Expr
中递归,因此它对辅助函数的作用与 ana
在@chi 的回答中所做的相同:
> substituteName "x" 42 (Add [Add [Variable "x"], Number 0])
Add [Add [Number 42],Number 0]
> replaceSubWithAdd (Add [Sub (Add [Variable "x",
Sub (Variable "y") (Number 34)]) (Number 10), Number 4])
Add [Add [Add [Variable "x",Add [Variable "y",Number (-34)]],Number (-10)],Number 4]
>
这不比@chi 的模板 Haskell 解决方案短。一个潜在的优势是 uniplate
提供了一些可能有用的附加功能。例如,如果您使用 descend
代替 transform
,它只会转换 直接 子级,这可以让您控制递归发生的位置,或者您可以使用 rewrite
重新变换变换的结果,直到达到固定点。一个潜在的缺点是 "anamorphism" 听起来比 "uniplate" 更酷。
完整节目:
{-# LANGUAGE DeriveDataTypeable #-}
import Data.Data -- in base
import Data.Generics.Uniplate.Data -- package uniplate
data Expr
= Variable String
| Number Int
| Add [Expr]
| Sub Expr Expr
deriving (Show, Data)
substituteName :: String -> Int -> Expr -> Expr
substituteName name newValue = transform f
where f (Variable x) | x == name = Number newValue
f other = other
replaceSubWithAdd :: Expr -> Expr
replaceSubWithAdd = transform f
where f (Sub x (Number y)) = Add [x, Number (-y)]
f other = other
replaceSubWithAdd1 :: Expr -> Expr
replaceSubWithAdd1 = descend f
where f (Sub x (Number y)) = Add [x, Number (-y)]
f other = other
main = do
print $ substituteName "x" 42 (Add [Add [Variable "x"], Number 0])
print $ replaceSubWithAdd e
print $ replaceSubWithAdd1 e
where e = Add [Sub (Add [Variable "x", Sub (Variable "y") (Number 34)])
(Number 10), Number 4]
我目前正在为一种编程语言开发一个简单的解释器,我有这样的数据类型:
data Expr
= Variable String
| Number Int
| Add [Expr]
| Sub Expr Expr
我有很多函数可以做一些简单的事情,比如:
-- Substitute a value for a variable
substituteName :: String -> Int -> Expr -> Expr
substituteName name newValue = go
where
go (Variable x)
| x == name = Number newValue
go (Add xs) =
Add $ map go xs
go (Sub x y) =
Sub (go x) (go y)
go other = other
-- Replace subtraction with a constant with addition by a negative number
replaceSubWithAdd :: Expr -> Expr
replaceSubWithAdd = go
where
go (Sub x (Number y)) =
Add [go x, Number (-y)]
go (Add xs) =
Add $ map go xs
go (Sub x y) =
Sub (go x) (go y)
go other = other
但是在这些函数中的每一个中,我都必须重复递归调用代码的部分,只需对函数的一部分进行微小的更改。有没有更普遍的方法来做到这一点?我宁愿不必复制和粘贴这部分:
go (Add xs) =
Add $ map go xs
go (Sub x y) =
Sub (go x) (go y)
go other = other
并且每次只更改一个案例,因为像这样复制代码似乎效率低下。
我能想出的唯一解决方案是有一个函数,它首先在整个数据结构上调用一个函数,然后在结果上递归调用,如下所示:
recurseAfter :: (Expr -> Expr) -> Expr -> Expr
recurseAfter f x =
case f x of
Add xs ->
Add $ map (recurseAfter f) xs
Sub x y ->
Sub (recurseAfter f x) (recurseAfter f y)
other -> other
substituteName :: String -> Int -> Expr -> Expr
substituteName name newValue =
recurseAfter $ \case
Variable x
| x == name -> Number newValue
other -> other
replaceSubWithAdd :: Expr -> Expr
replaceSubWithAdd =
recurseAfter $ \case
Sub x (Number y) ->
Add [x, Number (-y)]
other -> other
但我觉得应该已经有一种更简单的方法可以做到这一点。我错过了什么吗?
恭喜,您刚刚重新发现变形!
这是您的代码,经过重新措辞,以便与 recursion-schemes
包一起使用。 las,它并不短,因为我们需要一些样板文件来使机器工作。 (可能有一些自动方法可以避免样板,例如使用泛型。我只是不知道。)
下面,您的 recurseAfter
被替换为标准的 ana
。
我们首先定义你的递归类型,以及它作为不动点的函子。
{-# LANGUAGE DeriveFunctor, TypeFamilies, LambdaCase #-}
{-# OPTIONS -Wall #-}
module AnaExpr where
import Data.Functor.Foldable
data Expr
= Variable String
| Number Int
| Add [Expr]
| Sub Expr Expr
deriving (Show)
data ExprF a
= VariableF String
| NumberF Int
| AddF [a]
| SubF a a
deriving (Functor)
然后我们用几个实例将两者连接起来,这样我们就可以将Expr
展开成同构的ExprF Expr
,再折回去
type instance Base Expr = ExprF
instance Recursive Expr where
project (Variable s) = VariableF s
project (Number i) = NumberF i
project (Add es) = AddF es
project (Sub e1 e2) = SubF e1 e2
instance Corecursive Expr where
embed (VariableF s) = Variable s
embed (NumberF i) = Number i
embed (AddF es) = Add es
embed (SubF e1 e2) = Sub e1 e2
最后,我们调整了您的原始代码,并添加了一些测试。
substituteName :: String -> Int -> Expr -> Expr
substituteName name newValue = ana $ \case
Variable x | x == name -> NumberF newValue
other -> project other
testSub :: Expr
testSub = substituteName "x" 42 (Add [Add [Variable "x"], Number 0])
replaceSubWithAdd :: Expr -> Expr
replaceSubWithAdd = ana $ \case
Sub x (Number y) -> AddF [x, Number (-y)]
other -> project other
testReplace :: Expr
testReplace = replaceSubWithAdd
(Add [Sub (Add [Variable "x", Sub (Variable "y") (Number 34)]) (Number 10), Number 4])
另一种方法是仅定义 ExprF a
,然后派生 type Expr = Fix ExprF
。这节省了上面的一些样板(例如两个实例),代价是必须使用 Fix (VariableF ...)
而不是 Variable ...
,以及其他构造函数的类似方法。
可以使用模式同义词进一步缓解这种情况(但代价是多一点样板文件)。
更新:我终于找到了 automagic 工具,使用模板 Haskell。这使得整个代码相当短。请注意,ExprF
仿函数和上面的两个实例仍然存在,我们仍然需要使用它们。我们只是省去了必须手动定义它们的麻烦,但仅此一项就节省了很多精力。
{-# LANGUAGE DeriveFunctor, DeriveTraversable, TypeFamilies, LambdaCase, TemplateHaskell #-}
{-# OPTIONS -Wall #-}
module AnaExpr where
import Data.Functor.Foldable
import Data.Functor.Foldable.TH
data Expr
= Variable String
| Number Int
| Add [Expr]
| Sub Expr Expr
deriving (Show)
makeBaseFunctor ''Expr
substituteName :: String -> Int -> Expr -> Expr
substituteName name newValue = ana $ \case
Variable x | x == name -> NumberF newValue
other -> project other
testSub :: Expr
testSub = substituteName "x" 42 (Add [Add [Variable "x"], Number 0])
replaceSubWithAdd :: Expr -> Expr
replaceSubWithAdd = ana $ \case
Sub x (Number y) -> AddF [x, Number (-y)]
other -> project other
testReplace :: Expr
testReplace = replaceSubWithAdd
(Add [Sub (Add [Variable "x", Sub (Variable "y") (Number 34)]) (Number 10), Number 4])
作为替代方法,这也是 uniplate
包的典型用例。它可以使用 Data.Data
泛型而不是模板 Haskell 来生成样板文件,因此如果您为 Expr
:
Data
个实例
import Data.Data
data Expr
= Variable String
| Number Int
| Add [Expr]
| Sub Expr Expr
deriving (Show, Data)
然后 Data.Generics.Uniplate.Data
中的 transform
函数递归地对每个嵌套的 Expr
:
import Data.Generics.Uniplate.Data
substituteName :: String -> Int -> Expr -> Expr
substituteName name newValue = transform f
where f (Variable x) | x == name = Number newValue
f other = other
replaceSubWithAdd :: Expr -> Expr
replaceSubWithAdd = transform f
where f (Sub x (Number y)) = Add [x, Number (-y)]
f other = other
请注意,特别是在replaceSubWithAdd
中,函数f
被编写为执行非递归替换; transform
使它在 x :: Expr
中递归,因此它对辅助函数的作用与 ana
在@chi 的回答中所做的相同:
> substituteName "x" 42 (Add [Add [Variable "x"], Number 0])
Add [Add [Number 42],Number 0]
> replaceSubWithAdd (Add [Sub (Add [Variable "x",
Sub (Variable "y") (Number 34)]) (Number 10), Number 4])
Add [Add [Add [Variable "x",Add [Variable "y",Number (-34)]],Number (-10)],Number 4]
>
这不比@chi 的模板 Haskell 解决方案短。一个潜在的优势是 uniplate
提供了一些可能有用的附加功能。例如,如果您使用 descend
代替 transform
,它只会转换 直接 子级,这可以让您控制递归发生的位置,或者您可以使用 rewrite
重新变换变换的结果,直到达到固定点。一个潜在的缺点是 "anamorphism" 听起来比 "uniplate" 更酷。
完整节目:
{-# LANGUAGE DeriveDataTypeable #-}
import Data.Data -- in base
import Data.Generics.Uniplate.Data -- package uniplate
data Expr
= Variable String
| Number Int
| Add [Expr]
| Sub Expr Expr
deriving (Show, Data)
substituteName :: String -> Int -> Expr -> Expr
substituteName name newValue = transform f
where f (Variable x) | x == name = Number newValue
f other = other
replaceSubWithAdd :: Expr -> Expr
replaceSubWithAdd = transform f
where f (Sub x (Number y)) = Add [x, Number (-y)]
f other = other
replaceSubWithAdd1 :: Expr -> Expr
replaceSubWithAdd1 = descend f
where f (Sub x (Number y)) = Add [x, Number (-y)]
f other = other
main = do
print $ substituteName "x" 42 (Add [Add [Variable "x"], Number 0])
print $ replaceSubWithAdd e
print $ replaceSubWithAdd1 e
where e = Add [Sub (Add [Variable "x", Sub (Variable "y") (Number 34)])
(Number 10), Number 4]