Jupyter中matplotlib绘图的持续更新

Continious update of matplotlib plot in Jupyter

我正在研究 Jupyter Notebook,我正在使用以下 ipywidget 来设置阈值:

Thr = widgets.IntSlider(value=-17, min=-30, max=-13, step=1, description='Threshold: ', disabled=False, continuous_update=True, orientation='horizontal', readout=True, readout_format='d')
Thr

接下来,我使用该值屏蔽 numpy array

import numpy.ma as ma
test= ma.masked_less_equal(S_images[0], Thr.value)

最后我绘制了结果:

plt.figure(figsize = (15,15))
plt.imshow(test[0], cmap='gray')

ipywidget 与其他代码的 Jupyter cell 不同,因此当我更改 Thr 的值时,我必须再次手动 运行 所在的单元格进行掩蔽和绘图。

我的问题是:我一直看到那些交互式绘图,您可以在其中更改参数(在我的例子中是 ipywidget Thr)并自动更新绘图。

我看到 widgets.IntSlider 有一个 continuous_update 参数,它似乎接近我想要的但仍然无法获得我想要的行为。

知道这是否可行吗?

_ 编辑 _

从ac24的评论开始,我正在改编他提出的例子:

from IPython.display import display, clear_output
import ipywidgets as ipy
import matplotlib.pyplot as plt
import numpy as np

# setup figure
n = 10

out = ipy.Output()

# show random mesh
def update(idx):
    with out:
        clear_output()
        fig, ax = plt.subplots(figsize = (5,5))
        h = ax.imshow(S_images[0]) # here I put my image
        h.set_data(np.ma.masked_less_equal(S_images[0], slider.value)) # here I set the task to masked accordint to the `slider.value`
        fig.canvas.flush_events()
        fig.canvas.draw()
        plt.show()

slider = ipy.IntSlider(min = 0, max = 10, orientation = 'vertical')
widget = ipy.interactive(update, idx = slider)

layout = ipy.Layout(
#     display = 'flex',
#                    flex_flow = 'row',
#                    justify_content = 'space-between',
#                    align_items = 'center',
                   )
widgets = ipy.HBox(children=(slider, out), layout = layout)
display(widgets)

这个例子非常好用,正是我想要的。但是,我对布局有一个小问题。最初我正在处理 3 张图片,所以我想让它们显示如下,每张图片旁边都有它的滑块来完成任务:(下面的图片不是真实的,只是为了代表我想要的)

编辑 2

在这种情况下,问题是,一旦我 select 滑块中的一个值,我就会将那个光栅写入 geotiff。为此,我使用以下代码:

with rasterio.open('/Path/20190331_VV_Crop') as src:
    ras_meta = src.profile

with rasterio.open('/path/Threshold.tif', 'w', **ras_meta) as dst:
    dst.write(X)

但是,我不确定如何在 dst.write(X)

中引用 numpy 数组

我已将我给出的示例改编成 class,因为您想要 link 特定的输出和滑块实例,但要创建它们的多个组。设置输出小部件的布局可避免在您滑动滑块时小部件一直调整大小。

from IPython.display import display, clear_output
import ipywidgets as ipy
import matplotlib.pyplot as plt
import numpy as np

# setup figure
n = 10

class SliderAndImage():

    # show random mesh
    def update(self, idx):
        with self.out:
            clear_output()
            fig, ax = plt.subplots(figsize = (5,5))
            h = ax.imshow(np.random.rand(n, n))
            h.set_data(np.random.rand(n, n))
            fig.canvas.flush_events()
            fig.canvas.draw()
            plt.show()

    def make_slider_and_image(self):

        self.out = ipy.Output(layout=ipy.Layout(width='200px', height='200px'))

        slider = ipy.IntSlider(min = 0, max = 10, orientation = 'vertical')
        widget = ipy.interactive(self.update, idx = slider)

        layout = ipy.Layout(
        #     display = 'flex',
        #                    flex_flow = 'row',
        #                    justify_content = 'space-between',
        #                    align_items = 'center',
                           )
        widgets = ipy.HBox(children=(slider, self.out), layout = layout)
        return widgets

children = []
for _ in range(3):
    widgets = SliderAndImage()
    children.append(widgets.make_slider_and_image())
display(ipy.HBox(children))