如何使用 OpenCV 去除图像的背景?
How to remove the background of an image using OpenCV?
从这张照片中删除背景的最佳方法是什么?
我试过转换为 HSV 并使用 inRange 来制作面具,但它没有完全吸收植物,并且在砖砌结构之间包含了一些砂浆。
由于所需植物和背景之间似乎有明显的区别,我建议使用较低和较高阈值范围的颜色阈值来隔离所需区域。思路是将图片转成HSV格式,颜色阈值得到mask,然后bitwise-and。我认为您采用了正确的方法,但无法确定下限和上限范围。使用此 lower/upper 范围:
hsv_lower = np.array([41,57,78])
hsv_upper = np.array([145,255,255])
import cv2
import numpy as np
image = cv2.imread("1.jpg")
original = image.copy()
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
hsv_lower = np.array([41,57,78])
hsv_upper = np.array([145,255,255])
mask = cv2.inRange(hsv, hsv_lower, hsv_upper)
result = cv2.bitwise_and(original, original, mask=mask)
cv2.imshow('mask', mask)
cv2.imshow('result', result)
cv2.waitKey()
要确定下限和上限,我们可以使用颜色阈值 HSV 脚本
import cv2
import sys
import numpy as np
def nothing(x):
pass
# Load in image
image = cv2.imread('1.jpg')
# Create a window
cv2.namedWindow('image')
# create trackbars for color change
cv2.createTrackbar('HMin','image',0,179,nothing) # Hue is from 0-179 for Opencv
cv2.createTrackbar('SMin','image',0,255,nothing)
cv2.createTrackbar('VMin','image',0,255,nothing)
cv2.createTrackbar('HMax','image',0,179,nothing)
cv2.createTrackbar('SMax','image',0,255,nothing)
cv2.createTrackbar('VMax','image',0,255,nothing)
# Set default value for MAX HSV trackbars.
cv2.setTrackbarPos('HMax', 'image', 179)
cv2.setTrackbarPos('SMax', 'image', 255)
cv2.setTrackbarPos('VMax', 'image', 255)
# Initialize to check if HSV min/max value changes
hMin = sMin = vMin = hMax = sMax = vMax = 0
phMin = psMin = pvMin = phMax = psMax = pvMax = 0
output = image
wait_time = 33
while(1):
# get current positions of all trackbars
hMin = cv2.getTrackbarPos('HMin','image')
sMin = cv2.getTrackbarPos('SMin','image')
vMin = cv2.getTrackbarPos('VMin','image')
hMax = cv2.getTrackbarPos('HMax','image')
sMax = cv2.getTrackbarPos('SMax','image')
vMax = cv2.getTrackbarPos('VMax','image')
# Set minimum and max HSV values to display
lower = np.array([hMin, sMin, vMin])
upper = np.array([hMax, sMax, vMax])
# Create HSV Image and threshold into a range.
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, lower, upper)
output = cv2.bitwise_and(image,image, mask= mask)
# Print if there is a change in HSV value
if( (phMin != hMin) | (psMin != sMin) | (pvMin != vMin) | (phMax != hMax) | (psMax != sMax) | (pvMax != vMax) ):
print("(hMin = %d , sMin = %d, vMin = %d), (hMax = %d , sMax = %d, vMax = %d)" % (hMin , sMin , vMin, hMax, sMax , vMax))
phMin = hMin
psMin = sMin
pvMin = vMin
phMax = hMax
psMax = sMax
pvMax = vMax
# Display output image
cv2.imshow('image',output)
# Wait longer to prevent freeze for videos.
if cv2.waitKey(wait_time) & 0xFF == ord('q'):
break
cv2.destroyAllWindows()
从这张照片中删除背景的最佳方法是什么?
我试过转换为 HSV 并使用 inRange 来制作面具,但它没有完全吸收植物,并且在砖砌结构之间包含了一些砂浆。
由于所需植物和背景之间似乎有明显的区别,我建议使用较低和较高阈值范围的颜色阈值来隔离所需区域。思路是将图片转成HSV格式,颜色阈值得到mask,然后bitwise-and。我认为您采用了正确的方法,但无法确定下限和上限范围。使用此 lower/upper 范围:
hsv_lower = np.array([41,57,78])
hsv_upper = np.array([145,255,255])
import cv2
import numpy as np
image = cv2.imread("1.jpg")
original = image.copy()
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
hsv_lower = np.array([41,57,78])
hsv_upper = np.array([145,255,255])
mask = cv2.inRange(hsv, hsv_lower, hsv_upper)
result = cv2.bitwise_and(original, original, mask=mask)
cv2.imshow('mask', mask)
cv2.imshow('result', result)
cv2.waitKey()
要确定下限和上限,我们可以使用颜色阈值 HSV 脚本
import cv2
import sys
import numpy as np
def nothing(x):
pass
# Load in image
image = cv2.imread('1.jpg')
# Create a window
cv2.namedWindow('image')
# create trackbars for color change
cv2.createTrackbar('HMin','image',0,179,nothing) # Hue is from 0-179 for Opencv
cv2.createTrackbar('SMin','image',0,255,nothing)
cv2.createTrackbar('VMin','image',0,255,nothing)
cv2.createTrackbar('HMax','image',0,179,nothing)
cv2.createTrackbar('SMax','image',0,255,nothing)
cv2.createTrackbar('VMax','image',0,255,nothing)
# Set default value for MAX HSV trackbars.
cv2.setTrackbarPos('HMax', 'image', 179)
cv2.setTrackbarPos('SMax', 'image', 255)
cv2.setTrackbarPos('VMax', 'image', 255)
# Initialize to check if HSV min/max value changes
hMin = sMin = vMin = hMax = sMax = vMax = 0
phMin = psMin = pvMin = phMax = psMax = pvMax = 0
output = image
wait_time = 33
while(1):
# get current positions of all trackbars
hMin = cv2.getTrackbarPos('HMin','image')
sMin = cv2.getTrackbarPos('SMin','image')
vMin = cv2.getTrackbarPos('VMin','image')
hMax = cv2.getTrackbarPos('HMax','image')
sMax = cv2.getTrackbarPos('SMax','image')
vMax = cv2.getTrackbarPos('VMax','image')
# Set minimum and max HSV values to display
lower = np.array([hMin, sMin, vMin])
upper = np.array([hMax, sMax, vMax])
# Create HSV Image and threshold into a range.
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, lower, upper)
output = cv2.bitwise_and(image,image, mask= mask)
# Print if there is a change in HSV value
if( (phMin != hMin) | (psMin != sMin) | (pvMin != vMin) | (phMax != hMax) | (psMax != sMax) | (pvMax != vMax) ):
print("(hMin = %d , sMin = %d, vMin = %d), (hMax = %d , sMax = %d, vMax = %d)" % (hMin , sMin , vMin, hMax, sMax , vMax))
phMin = hMin
psMin = sMin
pvMin = vMin
phMax = hMax
psMax = sMax
pvMax = vMax
# Display output image
cv2.imshow('image',output)
# Wait longer to prevent freeze for videos.
if cv2.waitKey(wait_time) & 0xFF == ord('q'):
break
cv2.destroyAllWindows()