如何计算 2 条线段相交的位置?
How do I calculate where do 2 line segments intersect?
我已经实现了 GeeksForGeeks 的线段交点公式。效果很好,但我还需要知道这两条线段的交点。我怎样才能修改代码来做到这一点? (C++)
首先是点 class(实际上只是一个二维向量)
#include <iostream>
using namespace std;
struct Point
{
int x;
int y;
};
此函数检查 2 个点是否在同一段上。
// Given three colinear points p, q, r, the function checks if
// point q lies on line segment 'pr'
bool onSegment(Point p, Point q, Point r)
{
if (q.x <= max(p.x, r.x) && q.x >= min(p.x, r.x) &&
q.y <= max(p.y, r.y) && q.y >= min(p.y, r.y))
return true;
return false;
}
这个找到有序三元组的旋转。
// To find orientation of ordered triplet (p, q, r).
// The function returns following values
// 0 --> p, q and r are colinear
// 1 --> Clockwise
// 2 --> Counterclockwise
int orientation(Point p, Point q, Point r)
{
// See https://www.geeksforgeeks.org/orientation-3-ordered-points/
// for details of below formula.
int val = (q.y - p.y) * (r.x - q.x) -
(q.x - p.x) * (r.y - q.y);
if (val == 0) return 0; // colinear
return (val > 0)? 1: 2; // clock or counterclock wise
}
// The main function that returns true if line segment 'p1q1'
// and 'p2q2' intersect.
最后是检查交集的函数。但是它发生在哪里?
bool doIntersect(Point p1, Point q1, Point p2, Point q2)
{
// Find the four orientations needed for general and
// special cases
int o1 = orientation(p1, q1, p2);
int o2 = orientation(p1, q1, q2);
int o3 = orientation(p2, q2, p1);
int o4 = orientation(p2, q2, q1);
// General case
if (o1 != o2 && o3 != o4)
return true;
// Special Cases
// p1, q1 and p2 are colinear and p2 lies on segment p1q1
if (o1 == 0 && onSegment(p1, p2, q1)) return true;
// p1, q1 and q2 are colinear and q2 lies on segment p1q1
if (o2 == 0 && onSegment(p1, q2, q1)) return true;
// p2, q2 and p1 are colinear and p1 lies on segment p2q2
if (o3 == 0 && onSegment(p2, p1, q2)) return true;
// p2, q2 and q1 are colinear and q1 lies on segment p2q2
if (o4 == 0 && onSegment(p2, q1, q2)) return true;
return false; // Doesn't fall in any of the above cases
}
您只需执行此 wiki 中找到的方程式之一。
在下面的代码中我选择实现第一个方程
// your previous code
Point CalcIntersection(Point p1, Point q1, Point p2, Point q2){
struct Point pInt;
if(doIntersect(p1, q1, p2, q2)){
pInt.x= ((p1.x * q1.y - p1.y * q1.x)*(p2.x-q2.x) - (p2.x * q2.y - p2.y * q2.x)*(p1.x-q1.x)) / ((p1.x-q1.x) * (p2.y-q2.y) -(p1.y-q1.y) * (p2.x-q2.x));
pInt.y = ((p1.x * q1.y - p1.y * q1.x)*(p2.y-q2.y) - (p2.x * q2.y - p2.y * q2.x)*(p1.y-q1.y)) / ((p1.x-q1.x) * (p2.y-q2.y) -(p1.y-q1.y) * (p2.x-q2.x));
}
return pInt;
}
Rq:我认为你的 x 和 y 应该是浮点数而不是整数
我已经实现了 GeeksForGeeks 的线段交点公式。效果很好,但我还需要知道这两条线段的交点。我怎样才能修改代码来做到这一点? (C++)
首先是点 class(实际上只是一个二维向量)
#include <iostream>
using namespace std;
struct Point
{
int x;
int y;
};
此函数检查 2 个点是否在同一段上。
// Given three colinear points p, q, r, the function checks if
// point q lies on line segment 'pr'
bool onSegment(Point p, Point q, Point r)
{
if (q.x <= max(p.x, r.x) && q.x >= min(p.x, r.x) &&
q.y <= max(p.y, r.y) && q.y >= min(p.y, r.y))
return true;
return false;
}
这个找到有序三元组的旋转。
// To find orientation of ordered triplet (p, q, r).
// The function returns following values
// 0 --> p, q and r are colinear
// 1 --> Clockwise
// 2 --> Counterclockwise
int orientation(Point p, Point q, Point r)
{
// See https://www.geeksforgeeks.org/orientation-3-ordered-points/
// for details of below formula.
int val = (q.y - p.y) * (r.x - q.x) -
(q.x - p.x) * (r.y - q.y);
if (val == 0) return 0; // colinear
return (val > 0)? 1: 2; // clock or counterclock wise
}
// The main function that returns true if line segment 'p1q1'
// and 'p2q2' intersect.
最后是检查交集的函数。但是它发生在哪里?
bool doIntersect(Point p1, Point q1, Point p2, Point q2)
{
// Find the four orientations needed for general and
// special cases
int o1 = orientation(p1, q1, p2);
int o2 = orientation(p1, q1, q2);
int o3 = orientation(p2, q2, p1);
int o4 = orientation(p2, q2, q1);
// General case
if (o1 != o2 && o3 != o4)
return true;
// Special Cases
// p1, q1 and p2 are colinear and p2 lies on segment p1q1
if (o1 == 0 && onSegment(p1, p2, q1)) return true;
// p1, q1 and q2 are colinear and q2 lies on segment p1q1
if (o2 == 0 && onSegment(p1, q2, q1)) return true;
// p2, q2 and p1 are colinear and p1 lies on segment p2q2
if (o3 == 0 && onSegment(p2, p1, q2)) return true;
// p2, q2 and q1 are colinear and q1 lies on segment p2q2
if (o4 == 0 && onSegment(p2, q1, q2)) return true;
return false; // Doesn't fall in any of the above cases
}
您只需执行此 wiki 中找到的方程式之一。
在下面的代码中我选择实现第一个方程
// your previous code
Point CalcIntersection(Point p1, Point q1, Point p2, Point q2){
struct Point pInt;
if(doIntersect(p1, q1, p2, q2)){
pInt.x= ((p1.x * q1.y - p1.y * q1.x)*(p2.x-q2.x) - (p2.x * q2.y - p2.y * q2.x)*(p1.x-q1.x)) / ((p1.x-q1.x) * (p2.y-q2.y) -(p1.y-q1.y) * (p2.x-q2.x));
pInt.y = ((p1.x * q1.y - p1.y * q1.x)*(p2.y-q2.y) - (p2.x * q2.y - p2.y * q2.x)*(p1.y-q1.y)) / ((p1.x-q1.x) * (p2.y-q2.y) -(p1.y-q1.y) * (p2.x-q2.x));
}
return pInt;
}
Rq:我认为你的 x 和 y 应该是浮点数而不是整数